123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934 |
- /*
- Adapted from https://github.com/mit-han-lab/llm-awq
- @article{lin2023awq,
- title={AWQ: Activation-aware Weight Quantization for LLM Compression and
- Acceleration}, author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang,
- Shang and Dang, Xingyu and Han, Song}, journal={arXiv}, year={2023}
- }
- */
- #include <torch/all.h>
- #include <c10/cuda/CUDAGuard.h>
- #include "dequantize.cuh"
- #include <cuda_fp16.h>
- namespace aphrodite {
- namespace awq {
- template <int N>
- __global__ void __launch_bounds__(64)
- gemm_forward_4bit_cuda_m16nXk32(int G, int split_k_iters,
- half* __restrict__ A, int* __restrict__ B,
- half* __restrict__ scaling_factors,
- int* __restrict__ zeros, int M, int IC,
- int OC, half* __restrict__ C) {
- // Only support matrix n = 64 or 128
- assert(N == 64 || N == 128);
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 750
- assert(false);
- #else
- static constexpr uint32_t ZERO = 0x0;
- float C_warp[32];
- __shared__ half A_shared[16 * (32 + 8)];
- __shared__ half B_shared[32 * (N + 8)];
- int j_factors1 = ((OC + N - 1) / N);
- int blockIdx_y = blockIdx.x % ((M + 16 - 1) / 16 * j_factors1);
- int blockIdx_z = blockIdx.x / ((M + 16 - 1) / 16 * j_factors1);
- half A_shared_warp[8];
- half B_shared_warp[N / 4];
- for (int j_0_4_init = 0; j_0_4_init < N / 32; ++j_0_4_init) {
- for (int i = 0; i < 8; ++i) {
- C_warp[(j_0_4_init * 8) + i] = 0.0;
- }
- }
- static constexpr int row_stride_warp = 32 * 8 / 32;
- static constexpr int row_stride = 2 * 32 * 8 / N;
- // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
- bool ld_A_flag =
- (blockIdx_y / j_factors1 * 16 + threadIdx.y * row_stride_warp +
- threadIdx.x * 8 / 32) < M; // threadIdx.y is warp_id
- // bool wb_C_flag = (threadIdx.x / 4) < M;
- half* A_ptr =
- A +
- (((int)blockIdx_y) / j_factors1 * 16 +
- (((int)threadIdx.y) * row_stride_warp) + ((int)threadIdx.x) / (32 / 8)) *
- IC +
- (((int)threadIdx.x) % (32 / 8)) * 8;
- int* B_ptr = B + ((int)threadIdx.y) * (OC / 8) * (256 / N) +
- (((int)threadIdx.x) / (N / 8)) * (OC / 8) +
- (((int)blockIdx_y) % j_factors1) * (N / 8) +
- (((int)threadIdx.x) % (N / 8)) * 1;
- // Why * 1 in the above line?
- half* A_shared_ptr = A_shared +
- ((int)threadIdx.y) * row_stride_warp * (32 + 8) +
- (((int)threadIdx.x) / (32 / 8)) * (32 + 8) +
- (((int)threadIdx.x) % (32 / 8)) * 8;
- half* B_shared_ptr = B_shared +
- ((int)threadIdx.y) * (row_stride / 2) * (N + 8) +
- (((int)threadIdx.x) / (N / 8)) * (N + 8) +
- (((int)threadIdx.x) % (N / 8)) * 8;
- int* zeros_ptr = zeros + (((int)blockIdx_y) % j_factors1) * (N / 8) +
- ((int)threadIdx.x) % (N / 8);
- half* scaling_factors_ptr = scaling_factors +
- (((int)blockIdx_y) % j_factors1) * N +
- (((int)threadIdx.x) % (N / 8)) * 8;
- half* C_ptr =
- C +
- static_cast<long long>(blockIdx_z) * M * OC // blockIdz.x -> split_k dim
- + (((int)blockIdx_y) % j_factors1) * N + ((int)threadIdx.y) * (N / 2) +
- (((int)threadIdx.x) % 4) * 2;
- // preload s.f. and zeros
- int k_bound = (IC / 32 + split_k_iters - 1) / split_k_iters;
- if ((k_bound - 1) * split_k_iters * 32 + blockIdx_z * 32 >= IC) k_bound -= 1;
- for (int _k_0_0 = 0; _k_0_0 < k_bound; ++_k_0_0) {
- int k_0_0 = _k_0_0 * split_k_iters + blockIdx_z;
- __syncthreads();
- // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
- if (ld_A_flag) {
- *(uint4*)(A_shared_ptr) = *(uint4*)(A_ptr + (k_0_0 * 32));
- } else {
- *(uint4*)(A_shared_ptr) = make_uint4(0, 0, 0, 0);
- }
- // for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 2; ++ax0_ax1_fused_0) {
- uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr + k_0_0 * 32 / G * (OC / 8));
- uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
- uint4 B_loaded_scale =
- *(uint4*)(scaling_factors_ptr + k_0_0 * 32 / G * (OC));
- /*
- if (blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 == 0 && threadIdx.x == 0 &&
- threadIdx.y == 0){ printf("%x %x %x %x %x %x %x %x\n", B_loaded_scale.x,
- B_loaded_scale.y, B_loaded_scale.z, B_loaded_scale.w, B_loaded_zero.x,
- B_loaded_zero.y, B_loaded_zero.z, B_loaded_zero.w);
- }
- */
- // uint4 B_loaded_scale = make_uint4(0, 0, 0, 0);
- int* B_ptr_local = B_ptr + k_0_0 * 32 * (OC / 8);
- for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < N / 16; ++ax0_ax1_fused_0) {
- // B: 32 x 136 (128+8) float16
- // each warp: 32 x 4
- // each thr: read 32 bit -> convert to 8xFP16 (a UINT4) -> scale and minus
- // zero -> WB UINT4
- // *(uint4*)(B_shared + ((((ax0_ax1_fused_0 * 544) + (((int)threadIdx.y) *
- // 272)) + ((((int)threadIdx.x) >> 4) * 136)) + ((((int)threadIdx.x) & 15)
- // * 8))) = *(uint4*)(B + ((((((k_0_0 * 163840) + (ax0_ax1_fused_0 *
- // 20480)) + (((int)threadIdx.y) * 10240)) + ((((int)threadIdx.x) >> 4) *
- // 5120)) + (((int)blockIdx_y) * 128)) + ((((int)threadIdx.x) & 15) *
- // 8))); row stride in shared memory: (NWARPS * 32 * 8 / cta_N)
- uint32_t B_loaded =
- *(uint32_t*)(B_ptr_local + ax0_ax1_fused_0 * row_stride * (OC / 8));
- uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
- // - zero and * scale
- // TODO (Haotian): can save 4 assembly instructions if sormulate as deq =
- // q * scale - zero * scale.
- asm volatile("sub.f16x2 %0, %1, %2;\n"
- : "=r"(B_loaded_fp16.x)
- : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
- : "=r"(B_loaded_fp16.x)
- : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
- asm volatile("sub.f16x2 %0, %1, %2;\n"
- : "=r"(B_loaded_fp16.y)
- : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
- : "=r"(B_loaded_fp16.y)
- : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
- asm volatile("sub.f16x2 %0, %1, %2;\n"
- : "=r"(B_loaded_fp16.z)
- : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
- : "=r"(B_loaded_fp16.z)
- : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
- asm volatile("sub.f16x2 %0, %1, %2;\n"
- : "=r"(B_loaded_fp16.w)
- : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
- : "=r"(B_loaded_fp16.w)
- : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
- /*
- if (ax0_ax1_fused_0 == 0 && blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 ==
- 0 && threadIdx.x == 17 && threadIdx.y == 0){ printf("[x] %X %X %X %X\n",
- B_loaded_fp16.x, B_loaded_fp16.y, B_loaded_fp16.z, B_loaded_fp16.w);
- }
- */
- // write back
- *(uint4*)(B_shared_ptr + ax0_ax1_fused_0 * row_stride * (N + 8)) =
- B_loaded_fp16;
- }
- __syncthreads();
- for (int k_0_1 = 0; k_0_1 < 2; ++k_0_1) {
- {
- unsigned int addr;
- __asm__ __volatile__(
- "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, "
- "addr; }\n"
- : "=r"(addr)
- : "l"((void*)((&(A_shared[(k_0_1 * 16)])) +
- (((((int)threadIdx.x) & 15) * 40) +
- ((((int)threadIdx.x) >> 4) * 8)))));
- __asm__ __volatile__(
- "ldmatrix.sync.aligned.m8n8.x4.shared.b16"
- "{%0, %1, %2, %3}, [%4];\n"
- : "=r"(((unsigned*)(A_shared_warp + 0))[0]),
- "=r"(((unsigned*)(A_shared_warp + 0))[1]),
- "=r"(((unsigned*)(A_shared_warp + 0))[2]),
- "=r"(((unsigned*)(A_shared_warp + 0))[3])
- : "r"(addr));
- }
- for (int ax1_0 = 0; ax1_0 < N / 32; ++ax1_0) {
- {
- unsigned int addr;
- __asm__ __volatile__(
- "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, "
- "addr; }\n"
- : "=r"(addr)
- : "l"((void*)((&(B_shared[(((k_0_1 * (N * 16 + 128)) +
- (((int)threadIdx.y) * (N / 2))) +
- (ax1_0 * 16))])) +
- (((((int)threadIdx.x) & 15) * (N + 8)) +
- ((((int)threadIdx.x) >> 4) * 8)))));
- __asm__ __volatile__(
- "ldmatrix.sync.aligned.m8n8.x4.trans.shared.b16"
- "{%0, %1, %2, %3}, [%4];\n"
- : "=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[0]),
- "=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[1]),
- "=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[2]),
- "=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[3])
- : "r"(addr));
- }
- }
- for (int j_0_4 = 0; j_0_4 < N / 32; ++j_0_4) {
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ == 750
- {
- __asm__ __volatile__(
- "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
- "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
- : "=f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
- "=f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
- "=f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
- "=f"(((float*)(C_warp + (j_0_4 * 8)))[3])
- : "r"(((unsigned*)(A_shared_warp + 0))[0]),
- "r"(((unsigned*)(A_shared_warp + 0))[1]),
- "r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[0]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[3]));
- }
- {
- __asm__ __volatile__(
- "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
- "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
- : "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
- "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
- "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
- "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3])
- : "r"(((unsigned*)(A_shared_warp + 0))[0]),
- "r"(((unsigned*)(A_shared_warp + 0))[1]),
- "r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3]));
- }
- {
- __asm__ __volatile__(
- "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
- "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
- : "=f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
- "=f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
- "=f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
- "=f"(((float*)(C_warp + (j_0_4 * 8)))[3])
- : "r"(((unsigned*)(A_shared_warp + 0))[2]),
- "r"(((unsigned*)(A_shared_warp + 0))[3]),
- "r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[1]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[3]));
- }
- {
- __asm__ __volatile__(
- "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
- "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
- : "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
- "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
- "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
- "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3])
- : "r"(((unsigned*)(A_shared_warp + 0))[2]),
- "r"(((unsigned*)(A_shared_warp + 0))[3]),
- "r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3]));
- }
- #else
- {
- __asm__ __volatile__(
- "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
- "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, "
- "%13};\n"
- : "=f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
- "=f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
- "=f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
- "=f"(((float*)(C_warp + (j_0_4 * 8)))[3])
- : "r"(((unsigned*)(A_shared_warp + 0))[0]),
- "r"(((unsigned*)(A_shared_warp + 0))[1]),
- "r"(((unsigned*)(A_shared_warp + 0))[2]),
- "r"(((unsigned*)(A_shared_warp + 0))[3]),
- "r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[0]),
- "r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[1]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[3]));
- }
- {
- __asm__ __volatile__(
- "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
- "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, "
- "%13};\n"
- : "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
- "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
- "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
- "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3])
- : "r"(((unsigned*)(A_shared_warp + 0))[0]),
- "r"(((unsigned*)(A_shared_warp + 0))[1]),
- "r"(((unsigned*)(A_shared_warp + 0))[2]),
- "r"(((unsigned*)(A_shared_warp + 0))[3]),
- "r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]),
- "r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3]));
- }
- #endif
- }
- }
- }
- // TODO: Shang: Hoist loop invariance.
- for (int ax1_0_1 = 0; ax1_0_1 < 4; ++ax1_0_1) {
- for (int local_id = 0; local_id < 8; ++local_id) {
- int row_offset = (((int)blockIdx_y) / j_factors1) * 16 +
- ((int)threadIdx.x) / 4 + (local_id % 4) / 2 * 8;
- if (row_offset < M) {
- *(C_ptr + ax1_0_1 * 16 + row_offset * OC + (local_id / 4) * 8 +
- local_id % 2) = __float2half(C_warp[(ax1_0_1 * 8) + local_id]);
- }
- }
- }
- #endif
- }
- __global__ void __launch_bounds__(64)
- dequantize_weights(int* __restrict__ B, half* __restrict__ scaling_factors,
- int* __restrict__ zeros, half* __restrict__ C, int G,
- int in_c, int out_c) {
- if (blockIdx.z > 0) {
- B = B + blockIdx.z * in_c * out_c / 8;
- scaling_factors = scaling_factors + blockIdx.z * in_c * out_c / G;
- zeros = zeros + blockIdx.z * in_c * out_c / G / 8;
- C = C + blockIdx.z * in_c * out_c;
- }
- static constexpr uint32_t ZERO = 0x0;
- half B_shared[32 * (128 + 8)];
- half* B_shared_ptr2 = B_shared;
- int N = blockDim.x * gridDim.x; // 2
- int col = (blockIdx.x * blockDim.x + threadIdx.x);
- int row = blockIdx.y * blockDim.y + threadIdx.y;
- int index1 = 8 * col + 8 * row * N;
- half* C_ptr2 = C + index1;
- int index2 = col + row * N;
- int* B_ptr2 = B + index2;
- int index3 = col + (int)(row / G) * N;
- int* zeros_ptr2 = zeros + index3;
- int index4 = 8 * col + (int)(row / G) * N * 8;
- half* scaling_factors_ptr2 = scaling_factors + index4;
- uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr2);
- uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
- uint4 B_loaded_scale = *(uint4*)(scaling_factors_ptr2);
- uint32_t B_loaded = *(uint32_t*)B_ptr2;
- uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
- asm volatile("sub.f16x2 %0, %1, %2;\n"
- : "=r"(B_loaded_fp16.x)
- : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
- : "=r"(B_loaded_fp16.x)
- : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
- asm volatile("sub.f16x2 %0, %1, %2;\n"
- : "=r"(B_loaded_fp16.y)
- : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
- : "=r"(B_loaded_fp16.y)
- : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
- asm volatile("sub.f16x2 %0, %1, %2;\n"
- : "=r"(B_loaded_fp16.z)
- : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
- : "=r"(B_loaded_fp16.z)
- : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
- asm volatile("sub.f16x2 %0, %1, %2;\n"
- : "=r"(B_loaded_fp16.w)
- : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
- : "=r"(B_loaded_fp16.w)
- : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
- *(uint4*)B_shared_ptr2 = B_loaded_fp16;
- for (int i = 0; i < 8; ++i) {
- *(C_ptr2 + i) = B_shared[i];
- }
- }
- template <int N>
- __global__ void __launch_bounds__(64) group_gemm_forward_4bit_cuda_m16nXk32(
- int G, int split_k_iters, half* __restrict__ A, int* __restrict__ B,
- half* __restrict__ scaling_factors, int* __restrict__ zeros,
- const float* __restrict__ topk_weights,
- const int* __restrict__ sorted_token_ids_ptr,
- const int* __restrict__ expert_ids_ptr,
- const int* __restrict__ num_tokens_post_padded, const int num_valid_tokens,
- const int top_k, const int expert_num, int pad_M, int M, int IC, int OC,
- half* __restrict__ C) {
- // Only support matrix n = 64 or 128
- assert(N == 64 || N == 128);
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 750
- assert(false);
- #else
- int num_tokens = *num_tokens_post_padded;
- int j_factors1 = ((OC + N - 1) / N);
- [[maybe_unused]] int blockIdx_x = 0;
- int blockIdx_y = blockIdx.x % ((pad_M + 16 - 1) / 16 * j_factors1);
- int blockIdx_z = blockIdx.x / ((pad_M + 16 - 1) / 16 * j_factors1);
- int block = blockIdx_y / j_factors1;
- if (block * 16 >= num_tokens) return;
- static constexpr uint32_t ZERO = 0x0;
- float C_warp[32];
- __shared__ half A_shared[16 * (32 + 8)];
- __shared__ half B_shared[32 * (N + 8)];
- [[maybe_unused]] __shared__ half scaling_factors_shared[N];
- [[maybe_unused]] __shared__ half zeros_shared[N];
- half A_shared_warp[8];
- half B_shared_warp[N / 4];
- for (int j_0_4_init = 0; j_0_4_init < N / 32; ++j_0_4_init) {
- for (int i = 0; i < 8; ++i) {
- C_warp[(j_0_4_init * 8) + i] = 0.0;
- }
- }
- static constexpr int row_stride_warp = 32 * 8 / 32;
- static constexpr int row_stride = 2 * 32 * 8 / N;
- [[maybe_unused]] bool ld_zero_flag = (threadIdx.y * 32 + threadIdx.x) * 8 < N;
- // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
- int row = (block * 16 + threadIdx.y * row_stride_warp + threadIdx.x * 8 / 32);
- int token_id = sorted_token_ids_ptr[row];
- bool ld_A_flag = (token_id < num_valid_tokens);
- half* A_ptr = A + token_id / top_k * IC + (((int)threadIdx.x) % (32 / 8)) * 8;
- int expert_id = expert_ids_ptr[block];
- B = B + OC * IC / 8 * expert_id;
- scaling_factors = scaling_factors + OC * IC / G * expert_id;
- zeros = zeros + OC * IC / G / 8 * expert_id;
- int* B_ptr = B + ((int)threadIdx.y) * (OC / 8) * (256 / N) +
- (((int)threadIdx.x) / (N / 8)) * (OC / 8) +
- (((int)blockIdx_y) % j_factors1) * (N / 8) +
- (((int)threadIdx.x) % (N / 8)) * 1;
- // Why * 1 in the above line?
- half* A_shared_ptr = A_shared +
- ((int)threadIdx.y) * row_stride_warp * (32 + 8) +
- (((int)threadIdx.x) / (32 / 8)) * (32 + 8) +
- (((int)threadIdx.x) % (32 / 8)) * 8;
- half* B_shared_ptr = B_shared +
- ((int)threadIdx.y) * (row_stride / 2) * (N + 8) +
- (((int)threadIdx.x) / (N / 8)) * (N + 8) +
- (((int)threadIdx.x) % (N / 8)) * 8;
- int* zeros_ptr = zeros + (((int)blockIdx_y) % j_factors1) * (N / 8) +
- ((int)threadIdx.x) % (N / 8);
- half* scaling_factors_ptr = scaling_factors +
- (((int)blockIdx_y) % j_factors1) * N +
- (((int)threadIdx.x) % (N / 8)) * 8;
- half* C_ptr = C +
- static_cast<long long>(blockIdx_z) * M * OC *
- expert_num // blockIdz.x -> split_k dim
- + (((int)blockIdx_y) % j_factors1) * N +
- ((int)threadIdx.y) * (N / 2) + (((int)threadIdx.x) % 4) * 2;
- // preload s.f. and zeros
- int k_bound = (IC / 32 + split_k_iters - 1) / split_k_iters;
- if ((k_bound - 1) * split_k_iters * 32 + blockIdx_z * 32 >= IC) k_bound -= 1;
- for (int _k_0_0 = 0; _k_0_0 < k_bound; ++_k_0_0) {
- int k_0_0 = _k_0_0 * split_k_iters + blockIdx_z;
- __syncthreads();
- // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
- if (ld_A_flag) {
- *(uint4*)(A_shared_ptr) = *(uint4*)(A_ptr + (k_0_0 * 32));
- } else {
- *(uint4*)(A_shared_ptr) = make_uint4(0, 0, 0, 0);
- }
- uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr + k_0_0 * 32 / G * (OC / 8));
- uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
- uint4 B_loaded_scale =
- *(uint4*)(scaling_factors_ptr + k_0_0 * 32 / G * (OC));
- int* B_ptr_local = B_ptr + k_0_0 * 32 * (OC / 8);
- for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < N / 16; ++ax0_ax1_fused_0) {
- uint32_t B_loaded =
- *(uint32_t*)(B_ptr_local + ax0_ax1_fused_0 * row_stride * (OC / 8));
- uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
- // TODO (Haotian): can save 4 assembly instructions if sormulate as deq =
- // q * scale - zero * scale.
- asm volatile("sub.f16x2 %0, %1, %2;\n"
- : "=r"(B_loaded_fp16.x)
- : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
- : "=r"(B_loaded_fp16.x)
- : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
- asm volatile("sub.f16x2 %0, %1, %2;\n"
- : "=r"(B_loaded_fp16.y)
- : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
- : "=r"(B_loaded_fp16.y)
- : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
- asm volatile("sub.f16x2 %0, %1, %2;\n"
- : "=r"(B_loaded_fp16.z)
- : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
- : "=r"(B_loaded_fp16.z)
- : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
- asm volatile("sub.f16x2 %0, %1, %2;\n"
- : "=r"(B_loaded_fp16.w)
- : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
- asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
- : "=r"(B_loaded_fp16.w)
- : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
- // write back
- *(uint4*)(B_shared_ptr + ax0_ax1_fused_0 * row_stride * (N + 8)) =
- B_loaded_fp16;
- }
- __syncthreads();
- for (int k_0_1 = 0; k_0_1 < 2; ++k_0_1) {
- {
- unsigned int addr;
- __asm__ __volatile__(
- "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, "
- "addr; }\n"
- : "=r"(addr)
- : "l"((void*)((&(A_shared[(k_0_1 * 16)])) +
- (((((int)threadIdx.x) & 15) * 40) +
- ((((int)threadIdx.x) >> 4) * 8)))));
- __asm__ __volatile__(
- "ldmatrix.sync.aligned.m8n8.x4.shared.b16"
- "{%0, %1, %2, %3}, [%4];\n"
- : "=r"(((unsigned*)(A_shared_warp + 0))[0]),
- "=r"(((unsigned*)(A_shared_warp + 0))[1]),
- "=r"(((unsigned*)(A_shared_warp + 0))[2]),
- "=r"(((unsigned*)(A_shared_warp + 0))[3])
- : "r"(addr));
- }
- for (int ax1_0 = 0; ax1_0 < N / 32; ++ax1_0) {
- {
- unsigned int addr;
- __asm__ __volatile__(
- "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, "
- "addr; }\n"
- : "=r"(addr)
- : "l"((void*)((&(B_shared[(((k_0_1 * (N * 16 + 128)) +
- (((int)threadIdx.y) * (N / 2))) +
- (ax1_0 * 16))])) +
- (((((int)threadIdx.x) & 15) * (N + 8)) +
- ((((int)threadIdx.x) >> 4) * 8)))));
- __asm__ __volatile__(
- "ldmatrix.sync.aligned.m8n8.x4.trans.shared.b16"
- "{%0, %1, %2, %3}, [%4];\n"
- : "=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[0]),
- "=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[1]),
- "=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[2]),
- "=r"(((unsigned*)(B_shared_warp + (ax1_0 * 8)))[3])
- : "r"(addr));
- }
- }
- for (int j_0_4 = 0; j_0_4 < N / 32; ++j_0_4) {
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ == 750
- {
- __asm__ __volatile__(
- "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
- "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
- : "=f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
- "=f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
- "=f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
- "=f"(((float*)(C_warp + (j_0_4 * 8)))[3])
- : "r"(((unsigned*)(A_shared_warp + 0))[0]),
- "r"(((unsigned*)(A_shared_warp + 0))[1]),
- "r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[0]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[3]));
- }
- {
- __asm__ __volatile__(
- "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
- "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
- : "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
- "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
- "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
- "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3])
- : "r"(((unsigned*)(A_shared_warp + 0))[0]),
- "r"(((unsigned*)(A_shared_warp + 0))[1]),
- "r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3]));
- }
- {
- __asm__ __volatile__(
- "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
- "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
- : "=f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
- "=f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
- "=f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
- "=f"(((float*)(C_warp + (j_0_4 * 8)))[3])
- : "r"(((unsigned*)(A_shared_warp + 0))[2]),
- "r"(((unsigned*)(A_shared_warp + 0))[3]),
- "r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[1]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[3]));
- }
- {
- __asm__ __volatile__(
- "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
- "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
- : "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
- "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
- "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
- "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3])
- : "r"(((unsigned*)(A_shared_warp + 0))[2]),
- "r"(((unsigned*)(A_shared_warp + 0))[3]),
- "r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3]));
- }
- #else
- {
- __asm__ __volatile__(
- "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
- "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, "
- "%13};\n"
- : "=f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
- "=f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
- "=f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
- "=f"(((float*)(C_warp + (j_0_4 * 8)))[3])
- : "r"(((unsigned*)(A_shared_warp + 0))[0]),
- "r"(((unsigned*)(A_shared_warp + 0))[1]),
- "r"(((unsigned*)(A_shared_warp + 0))[2]),
- "r"(((unsigned*)(A_shared_warp + 0))[3]),
- "r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[0]),
- "r"(((unsigned*)(B_shared_warp + (j_0_4 * 8)))[1]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[0]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[1]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[2]),
- "f"(((float*)(C_warp + (j_0_4 * 8)))[3]));
- }
- {
- __asm__ __volatile__(
- "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
- "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, "
- "%13};\n"
- : "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
- "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
- "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
- "=f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3])
- : "r"(((unsigned*)(A_shared_warp + 0))[0]),
- "r"(((unsigned*)(A_shared_warp + 0))[1]),
- "r"(((unsigned*)(A_shared_warp + 0))[2]),
- "r"(((unsigned*)(A_shared_warp + 0))[3]),
- "r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]),
- "r"(((unsigned*)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[0]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[1]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[2]),
- "f"(((float*)(C_warp + ((j_0_4 * 8) + 4)))[3]));
- }
- #endif
- }
- }
- }
- // TODO: Shang: Hoist loop invariance.
- for (int ax1_0_1 = 0; ax1_0_1 < N / 32; ++ax1_0_1) {
- for (int local_id = 0; local_id < 8; ++local_id) {
- int row_offset =
- block * 16 + ((int)threadIdx.x) / 4 + (local_id % 4) / 2 * 8;
- int token_id = sorted_token_ids_ptr[row_offset];
- if (token_id < num_valid_tokens) {
- float value = C_warp[(ax1_0_1 * 8) + local_id];
- if (topk_weights) {
- value = value * topk_weights[token_id];
- }
- *(C_ptr + ax1_0_1 * 16 + token_id * OC + (local_id / 4) * 8 +
- local_id % 2) = __float2half(value);
- }
- }
- }
- #endif
- }
- } // namespace awq
- } // namespace aphrodite
- torch::Tensor awq_dequantize(torch::Tensor _kernel,
- torch::Tensor _scaling_factors,
- torch::Tensor _zeros, int64_t split_k_iters,
- int64_t thx, int64_t thy) {
- int in_c = _kernel.dim() == 2 ? _kernel.size(0) : _kernel.size(1);
- int qout_c = _kernel.dim() == 2 ? _kernel.size(1) : _kernel.size(2);
- int num_experts = _kernel.dim() == 2 ? 1 : _kernel.size(0);
- int out_c = qout_c * 8;
- int G = in_c / (_kernel.dim() == 2 ? _scaling_factors.size(0)
- : _scaling_factors.size(1));
- int x_thread = thx;
- int y_thread = thy;
- int x_blocks = 1;
- int y_blocks = 1;
- if (thx == 0) {
- x_thread = qout_c;
- }
- if (thy == 0) {
- y_thread = in_c;
- }
- if (thx == 0 && thy == 0) {
- x_thread = 8;
- y_thread = 8;
- x_blocks = (int)(qout_c / 8);
- y_blocks = (int)(in_c / 8);
- }
- const at::cuda::OptionalCUDAGuard device_guard(device_of(_scaling_factors));
- auto options = torch::TensorOptions()
- .dtype(_scaling_factors.dtype())
- .device(_scaling_factors.device());
- at::Tensor _de_kernel;
- if (num_experts == 1) {
- _de_kernel = torch::empty({in_c, out_c}, options);
- } else {
- _de_kernel = torch::empty({num_experts, in_c, out_c}, options);
- }
- auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
- auto de_kernel = reinterpret_cast<half*>(_de_kernel.data_ptr<at::Half>());
- auto scaling_factors =
- reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
- auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());
- dim3 num_blocks(x_blocks, y_blocks, num_experts);
- dim3 threads_per_block(x_thread, y_thread);
- const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
- aphrodite::awq::
- dequantize_weights<<<num_blocks, threads_per_block, 0, stream>>>(
- kernel, scaling_factors, zeros, de_kernel, G, in_c, out_c);
- return _de_kernel;
- }
- // in_feats: M, IC [float16]
- // kernel: IC, OC // 8 [int32] -> cast to IC, OC [uint4b]
- // scaling_factors: IC // G, OC [float16]
- // zeros: IC // G, OC // 8 [int32] -> cast to IC // G, OC [uint4b]
- // assume that batch_size < 16 for now
- torch::Tensor awq_gemm(torch::Tensor _in_feats, torch::Tensor _kernel,
- torch::Tensor _scaling_factors, torch::Tensor _zeros,
- int64_t split_k_iters) {
- int num_in_feats = _in_feats.size(0);
- int num_in_channels = _in_feats.size(1);
- const at::cuda::OptionalCUDAGuard device_guard(device_of(_in_feats));
- auto options = torch::TensorOptions()
- .dtype(_in_feats.dtype())
- .device(_in_feats.device());
- at::Tensor _out_feats =
- torch::empty({split_k_iters, num_in_feats, _kernel.size(1) * 8}, options);
- int num_out_feats = _out_feats.size(-2);
- int num_out_channels = _out_feats.size(-1);
- auto in_feats = reinterpret_cast<half*>(_in_feats.data_ptr<at::Half>());
- auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
- auto out_feats = reinterpret_cast<half*>(_out_feats.data_ptr<at::Half>());
- auto scaling_factors =
- reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
- auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());
- int group_size = num_in_channels / _scaling_factors.size(0);
- if (num_out_channels % 64 != 0)
- throw std::invalid_argument("OC is not multiple of cta_N = 64");
- if (num_out_channels % 8 != 0)
- throw std::invalid_argument("OC is not multiple of pack_num = 8");
- if (group_size % 32 != 0)
- throw std::invalid_argument("Group size should be a multiple of 32");
- if (num_out_channels % group_size != 0)
- throw std::invalid_argument("OC is not multiple of Group size");
- const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
- if (num_out_channels % 128 == 0) {
- int j_factors1 = num_out_channels / 128 / 1;
- dim3 num_blocks((num_out_feats + 16 - 1) / 16 * j_factors1 * split_k_iters);
- // threadIdx.x: 32
- // threadIdx.y: i_factors[2] * j_factors[2]
- dim3 threads_per_block(32, 2);
- aphrodite::awq::gemm_forward_4bit_cuda_m16nXk32<128>
- <<<num_blocks, threads_per_block, 0, stream>>>(
- group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros,
- num_in_feats, num_in_channels, num_out_channels, out_feats);
- } else if (num_out_channels % 64 == 0) {
- int j_factors1 = num_out_channels / 64 / 1;
- dim3 num_blocks(1 * (num_out_feats + 16 - 1) / 16 * j_factors1 *
- split_k_iters);
- // threadIdx.x: 32
- // threadIdx.y: i_factors[2] * j_factors[2]
- dim3 threads_per_block(32, 2);
- aphrodite::awq::gemm_forward_4bit_cuda_m16nXk32<64>
- <<<num_blocks, threads_per_block, 0, stream>>>(
- group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros,
- num_in_feats, num_in_channels, num_out_channels, out_feats);
- }
- return _out_feats.sum(0);
- }
- torch::Tensor awq_group_gemm(torch::Tensor _in_feats, torch::Tensor _kernel,
- torch::Tensor _scaling_factors,
- torch::Tensor _zeros, torch::Tensor _topk_weights,
- torch::Tensor _sorted_token_ids_ptr,
- torch::Tensor _expert_ids_ptr,
- torch::Tensor _num_tokens_post_padded,
- bool mul_weights, int split_k_iters) {
- int num_in_feats = _in_feats.size(0);
- int pad_num_in_feats = _sorted_token_ids_ptr.size(0);
- int num_in_channels = _in_feats.size(2);
- const at::cuda::OptionalCUDAGuard device_guard(device_of(_in_feats));
- auto options = torch::TensorOptions()
- .dtype(_in_feats.dtype())
- .device(_in_feats.device());
- int num_experts = _topk_weights.size(1);
- int top_k = num_experts / _in_feats.size(1);
- int group_size = num_in_channels / _scaling_factors.size(1);
- at::Tensor _out_feats = torch::empty(
- {split_k_iters, num_in_feats, _topk_weights.size(1), _kernel.size(2) * 8},
- options);
- int num_out_channels = _out_feats.size(-1);
- auto in_feats = reinterpret_cast<half*>(_in_feats.data_ptr<at::Half>());
- auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
- auto out_feats = reinterpret_cast<half*>(_out_feats.data_ptr<at::Half>());
- auto scaling_factors =
- reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
- auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());
- auto topk_weights = mul_weights
- ? reinterpret_cast<float*>(_topk_weights.data_ptr())
- : nullptr;
- auto sorted_token_ids_ptr =
- reinterpret_cast<int*>(_sorted_token_ids_ptr.data_ptr());
- auto expert_ids_ptr = reinterpret_cast<int*>(_expert_ids_ptr.data_ptr());
- auto num_tokens_post_padded =
- reinterpret_cast<int*>(_num_tokens_post_padded.data_ptr());
- const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
- if (num_out_channels % 128 == 0) {
- int j_factors1 = num_out_channels / 128 / 1;
- dim3 num_blocks((pad_num_in_feats + 16 - 1) / 16 * j_factors1 *
- split_k_iters);
- // threadIdx.x: 32
- // threadIdx.y: i_factors[2] * j_factors[2]
- dim3 threads_per_block(32, 2);
- aphrodite::awq::group_gemm_forward_4bit_cuda_m16nXk32<128>
- <<<num_blocks, threads_per_block, 0, stream>>>(
- group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros,
- topk_weights, sorted_token_ids_ptr, expert_ids_ptr,
- num_tokens_post_padded, _topk_weights.numel(), top_k, num_experts,
- pad_num_in_feats, num_in_feats, num_in_channels, num_out_channels,
- out_feats);
- } else if (num_out_channels % 64 == 0) {
- int j_factors1 = num_out_channels / 64 / 1;
- dim3 num_blocks((pad_num_in_feats + 16 - 1) / 16 * j_factors1 *
- split_k_iters);
- // threadIdx.x: 32
- // threadIdx.y: i_factors[2] * j_factors[2]
- dim3 threads_per_block(32, 2);
- aphrodite::awq::group_gemm_forward_4bit_cuda_m16nXk32<64>
- <<<num_blocks, threads_per_block, 0, stream>>>(
- group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros,
- topk_weights, sorted_token_ids_ptr, expert_ids_ptr,
- num_tokens_post_padded, _topk_weights.numel(), top_k, num_experts,
- pad_num_in_feats, num_in_feats, num_in_channels, num_out_channels,
- out_feats);
- }
- return _out_feats.sum(0);
- }
|