123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716 |
- #include <torch/all.h>
- #include <ATen/cuda/CUDAContext.h>
- #include <c10/cuda/CUDAGuard.h>
- #include "selective_scan.h"
- #include <c10/util/BFloat16.h>
- #include <c10/util/Half.h>
- #include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
- #ifndef USE_ROCM
- #include <cub/block/block_load.cuh>
- #include <cub/block/block_store.cuh>
- #include <cub/block/block_scan.cuh>
- #else
- #include <hipcub/hipcub.hpp>
- namespace cub = hipcub;
- #endif
- #include "selective_scan.h"
- #include "static_switch.h"
- template <int kNThreads_, int kNItems_, int kNRows_, bool kIsEvenLen_,
- bool kIsVariableB_, bool kIsVariableC_, bool kHasZ_, bool kUseIndex_,
- typename input_t_, typename weight_t_>
- struct Selective_Scan_fwd_kernel_traits {
- static_assert(kNItems_ % 4 == 0);
- using input_t = input_t_;
- using weight_t = weight_t_;
- static constexpr int kNThreads = kNThreads_;
- // Setting MinBlocksPerMP to be 3 (instead of 2) for 128 threads improves
- // occupancy.
- static constexpr int kMinBlocks = kNThreads < 128 ? 5 : 3;
- static constexpr int kNItems = kNItems_;
- static constexpr int kNRows = kNRows_;
- static constexpr int kNBytes = sizeof(input_t);
- static_assert(kNBytes == 2 || kNBytes == 4);
- static constexpr int kNElts = kNBytes == 4 ? 4 : constexpr_min(8, kNItems);
- static_assert(kNItems % kNElts == 0);
- static constexpr int kNLoads = kNItems / kNElts;
- static constexpr bool kIsEvenLen = kIsEvenLen_;
- static constexpr bool kIsVariableB = kIsVariableB_;
- static constexpr bool kIsVariableC = kIsVariableC_;
- static constexpr bool kHasZ = kHasZ_;
- static constexpr bool kUseIndex = kUseIndex_;
- static constexpr bool kDirectIO = kIsEvenLen && kNLoads == 1;
- static constexpr int kNLoadsIndex = kNItems / 4;
- using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
- using scan_t = float2;
- using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems,
- cub::BLOCK_LOAD_WARP_TRANSPOSE>;
- using BlockLoadVecT =
- cub::BlockLoad<vec_t, kNThreads, kNLoads,
- !kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE
- : cub::BLOCK_LOAD_DIRECT>;
- using BlockLoadIndexT =
- cub::BlockLoad<int, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
- using BlockLoadIndexVecT = cub::BlockLoad<uint4, kNThreads, kNLoadsIndex,
- !(kIsEvenLen && kNLoadsIndex == 1)
- ? cub::BLOCK_LOAD_WARP_TRANSPOSE
- : cub::BLOCK_LOAD_DIRECT>;
- using BlockLoadWeightT = cub::BlockLoad<input_t, kNThreads, kNItems,
- cub::BLOCK_LOAD_WARP_TRANSPOSE>;
- using BlockLoadWeightVecT =
- cub::BlockLoad<vec_t, kNThreads, kNLoads,
- !kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE
- : cub::BLOCK_LOAD_DIRECT>;
- using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems,
- cub::BLOCK_STORE_WARP_TRANSPOSE>;
- using BlockStoreVecT =
- cub::BlockStore<vec_t, kNThreads, kNLoads,
- !kDirectIO ? cub::BLOCK_STORE_WARP_TRANSPOSE
- : cub::BLOCK_STORE_DIRECT>;
- // using BlockScanT = cub::BlockScan<scan_t, kNThreads,
- // cub::BLOCK_SCAN_RAKING_MEMOIZE>; using BlockScanT = cub::BlockScan<scan_t,
- // kNThreads, cub::BLOCK_SCAN_RAKING>;
- using BlockScanT =
- cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_WARP_SCANS>;
- static constexpr int kSmemIOSize =
- custom_max({sizeof(typename BlockLoadT::TempStorage),
- sizeof(typename BlockLoadVecT::TempStorage),
- sizeof(typename BlockLoadIndexT::TempStorage),
- sizeof(typename BlockLoadIndexVecT::TempStorage),
- (int(kIsVariableB) + int(kIsVariableC)) *
- sizeof(typename BlockLoadWeightT::TempStorage),
- (int(kIsVariableB) + int(kIsVariableC)) *
- sizeof(typename BlockLoadWeightVecT::TempStorage),
- sizeof(typename BlockStoreT::TempStorage),
- sizeof(typename BlockStoreVecT::TempStorage)});
- static constexpr int kSmemSize =
- kSmemIOSize + sizeof(typename BlockScanT::TempStorage);
- };
- template <typename Ktraits>
- __global__ __launch_bounds__(
- Ktraits::kNThreads,
- Ktraits::kMinBlocks) void selective_scan_fwd_kernel(SSMParamsBase params) {
- constexpr bool kIsVariableB = Ktraits::kIsVariableB;
- constexpr bool kIsVariableC = Ktraits::kIsVariableC;
- constexpr bool kHasZ = Ktraits::kHasZ;
- constexpr bool kUseIndex = Ktraits::kUseIndex;
- constexpr int kNThreads = Ktraits::kNThreads;
- constexpr int kNItems = Ktraits::kNItems;
- constexpr int kNRows = Ktraits::kNRows;
- constexpr bool kDirectIO = Ktraits::kDirectIO;
- using input_t = typename Ktraits::input_t;
- using weight_t = typename Ktraits::weight_t;
- using scan_t = typename Ktraits::scan_t;
- // Shared memory.
- extern __shared__ char smem_[];
- // cast to lvalue reference of expected type
- // char *smem_loadstorescan = smem_ + 2 * MAX_DSTATE * sizeof(weight_t);
- // auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_
- // + 2 * MAX_DSTATE * sizeof(weight_t)); auto& smem_load =
- // reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_loadstorescan);
- auto& smem_load =
- reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
- auto& smem_load_weight =
- reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage&>(smem_);
- auto& smem_load_index =
- reinterpret_cast<typename Ktraits::BlockLoadIndexT::TempStorage&>(smem_);
- auto& smem_load_weight1 =
- *reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage*>(
- smem_ + sizeof(typename Ktraits::BlockLoadWeightT::TempStorage));
- auto& smem_store =
- reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
- auto& smem_scan =
- *reinterpret_cast<typename Ktraits::BlockScanT::TempStorage*>(
- smem_ + Ktraits::kSmemIOSize);
- // weight_t *smem_a = reinterpret_cast<weight_t *>(smem_ +
- // smem_loadstorescan_size); weight_t *smem_bc = reinterpret_cast<weight_t
- // *>(smem_a + MAX_DSTATE);
- scan_t* smem_running_prefix =
- reinterpret_cast<scan_t*>(smem_ + Ktraits::kSmemSize);
- const int batch_id = blockIdx.x;
- const int dim_id = blockIdx.y;
- const int group_id = dim_id / (params.dim_ngroups_ratio);
- input_t* u = reinterpret_cast<input_t*>(params.u_ptr) +
- batch_id * params.u_batch_stride +
- dim_id * kNRows * params.u_d_stride;
- input_t* delta = reinterpret_cast<input_t*>(params.delta_ptr) +
- batch_id * params.delta_batch_stride +
- dim_id * kNRows * params.delta_d_stride;
- weight_t* A = reinterpret_cast<weight_t*>(params.A_ptr) +
- dim_id * kNRows * params.A_d_stride;
- weight_t* B = reinterpret_cast<weight_t*>(params.B_ptr) +
- dim_id * kNRows * params.B_d_stride;
- input_t* Bvar = reinterpret_cast<input_t*>(params.B_ptr) +
- batch_id * params.B_batch_stride +
- group_id * params.B_group_stride;
- weight_t* C = reinterpret_cast<weight_t*>(params.C_ptr) +
- dim_id * kNRows * params.C_d_stride;
- input_t* Cvar = reinterpret_cast<input_t*>(params.C_ptr) +
- batch_id * params.C_batch_stride +
- group_id * params.C_group_stride;
- scan_t* x = reinterpret_cast<scan_t*>(params.x_ptr) +
- (batch_id * params.dim + dim_id * kNRows) * params.n_chunks *
- params.dstate;
- int* index = !kUseIndex ? nullptr
- : reinterpret_cast<int*>(params.index_ptr) +
- batch_id * params.seqlen;
- float D_val[kNRows] = {0};
- if (params.D_ptr != nullptr) {
- #pragma unroll
- for (int r = 0; r < kNRows; ++r) {
- D_val[r] = reinterpret_cast<float*>(params.D_ptr)[dim_id * kNRows + r];
- }
- }
- float delta_bias[kNRows] = {0};
- if (params.delta_bias_ptr != nullptr) {
- #pragma unroll
- for (int r = 0; r < kNRows; ++r) {
- delta_bias[r] =
- reinterpret_cast<float*>(params.delta_bias_ptr)[dim_id * kNRows + r];
- }
- }
- // for (int state_idx = threadIdx.x; state_idx < params.dstate; state_idx +=
- // blockDim.x) {
- // smem_a[state_idx] = A[state_idx * params.A_dstate_stride];
- // smem_bc[state_idx] = B[state_idx * params.B_dstate_stride] *
- // C[state_idx * params.C_dstate_stride];
- // }
- constexpr int kChunkSize = kNThreads * kNItems;
- for (int chunk = 0; chunk < params.n_chunks; ++chunk) {
- input_t u_vals[kNRows][kNItems], delta_vals_load[kNRows][kNItems];
- int index_vals_load[kNRows][kNItems];
- __syncthreads();
- #pragma unroll
- for (int r = 0; r < kNRows; ++r) {
- if constexpr (!kDirectIO) {
- if (r > 0) {
- __syncthreads();
- }
- }
- load_input<Ktraits>(u + r * params.u_d_stride, u_vals[r], smem_load,
- params.seqlen - chunk * kChunkSize);
- if constexpr (!kDirectIO) {
- __syncthreads();
- }
- load_input<Ktraits>(delta + r * params.delta_d_stride, delta_vals_load[r],
- smem_load, params.seqlen - chunk * kChunkSize);
- if constexpr (kUseIndex) {
- load_index<Ktraits>(index + r * params.delta_d_stride,
- index_vals_load[r], smem_load_index,
- params.seqlen - chunk * kChunkSize);
- }
- }
- if constexpr (kUseIndex) {
- index += kChunkSize;
- }
- u += kChunkSize;
- delta += kChunkSize;
- float delta_vals[kNRows][kNItems], delta_u_vals[kNRows][kNItems],
- out_vals[kNRows][kNItems];
- #pragma unroll
- for (int r = 0; r < kNRows; ++r) {
- #pragma unroll
- for (int i = 0; i < kNItems; ++i) {
- float u_val = float(u_vals[r][i]);
- delta_vals[r][i] = float(delta_vals_load[r][i]) + delta_bias[r];
- if (params.delta_softplus) {
- delta_vals[r][i] = delta_vals[r][i] <= 20.f
- ? log1pf(expf(delta_vals[r][i]))
- : delta_vals[r][i];
- }
- delta_u_vals[r][i] = delta_vals[r][i] * u_val;
- out_vals[r][i] = D_val[r] * u_val;
- }
- }
- __syncthreads();
- for (int state_idx = 0; state_idx < params.dstate; ++state_idx) {
- weight_t A_val[kNRows];
- #pragma unroll
- for (int r = 0; r < kNRows; ++r) {
- A_val[r] =
- A[state_idx * params.A_dstate_stride + r * params.A_d_stride];
- // Multiply the real part of A with LOG2E so we can use exp2f instead of
- // expf.
- constexpr float kLog2e = M_LOG2E;
- A_val[r] *= kLog2e;
- }
- // This variable holds B * C if both B and C are constant across seqlen.
- // If only B varies across seqlen, this holds C. If only C varies across
- // seqlen, this holds B. If both B and C vary, this is unused.
- weight_t BC_val[kNRows];
- weight_t B_vals[kNItems], C_vals[kNItems];
- if constexpr (kIsVariableB) {
- load_weight<Ktraits>(Bvar + state_idx * params.B_dstate_stride, B_vals,
- smem_load_weight,
- (params.seqlen - chunk * kChunkSize) * (1));
- if constexpr (!kIsVariableC) {
- #pragma unroll
- for (int r = 0; r < kNRows; ++r) {
- BC_val[r] =
- C[state_idx * params.C_dstate_stride + r * params.C_d_stride];
- }
- }
- }
- if constexpr (kIsVariableC) {
- auto& smem_load_weight_C =
- !kIsVariableB ? smem_load_weight : smem_load_weight1;
- load_weight<Ktraits>(Cvar + state_idx * params.C_dstate_stride, C_vals,
- smem_load_weight_C,
- (params.seqlen - chunk * kChunkSize) * (1));
- if constexpr (!kIsVariableB) {
- #pragma unroll
- for (int r = 0; r < kNRows; ++r) {
- BC_val[r] =
- B[state_idx * params.B_dstate_stride + r * params.B_d_stride];
- }
- }
- }
- if constexpr (!kIsVariableB && !kIsVariableC) {
- #pragma unroll
- for (int r = 0; r < kNRows; ++r) {
- BC_val[r] =
- B[state_idx * params.B_dstate_stride + r * params.B_d_stride] *
- C[state_idx * params.C_dstate_stride + r * params.C_d_stride];
- }
- }
- #pragma unroll
- for (int r = 0; r < kNRows; ++r) {
- if (r > 0) {
- __syncthreads();
- } // Scan could be using the same smem
- scan_t thread_data[kNItems];
- #pragma unroll
- for (int i = 0; i < kNItems; ++i) {
- thread_data[i] =
- make_float2(exp2f(delta_vals[r][i] * A_val[r]),
- !kIsVariableB ? delta_u_vals[r][i]
- : B_vals[i] * delta_u_vals[r][i]);
- // Reset A bar for cumulative sequences (Real)
- if constexpr (kUseIndex) {
- if (index_vals_load[r][i] == 0) {
- thread_data[i].x = 0.f;
- }
- }
- if constexpr (!Ktraits::kIsEvenLen) { // So that the last state is
- // correct
- if (threadIdx.x * kNItems + i >=
- params.seqlen - chunk * kChunkSize) {
- thread_data[i] = make_float2(1.f, 0.f);
- }
- }
- }
- // Initialize running total
- scan_t running_prefix;
- // If we use WARP_SCAN then all lane 0 of all warps (not just thread 0)
- // needs to read
- running_prefix =
- chunk == 0 ? x[(r * params.n_chunks) * params.dstate + state_idx]
- : (threadIdx.x % 32 == 0
- ? smem_running_prefix[state_idx + r * MAX_DSTATE]
- : make_float2(1.f, 0.f));
- // running_prefix = chunk > 0 && threadIdx.x == 0 ?
- // smem_running_prefix[state_idx] : make_float2(1.f, 0.f);
- SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
- typename Ktraits::BlockScanT(smem_scan).InclusiveScan(
- thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op);
- // There's a syncthreads in the scan op, so we don't need to sync here.
- // Unless there's only 1 warp, but then it's the same thread (0) reading
- // and writing.
- if (threadIdx.x == 0) {
- smem_running_prefix[state_idx] = prefix_op.running_prefix;
- x[(r * params.n_chunks + chunk) * params.dstate + state_idx] =
- prefix_op.running_prefix;
- }
- #pragma unroll
- for (int i = 0; i < kNItems; ++i) {
- const weight_t C_val =
- !kIsVariableC
- ? BC_val[r]
- : (!kIsVariableB ? BC_val[r] * C_vals[i] : C_vals[i]);
- out_vals[r][i] += thread_data[i].y * C_val;
- }
- }
- }
- input_t* out = reinterpret_cast<input_t*>(params.out_ptr) +
- batch_id * params.out_batch_stride +
- dim_id * kNRows * params.out_d_stride + chunk * kChunkSize;
- __syncthreads();
- #pragma unroll
- for (int r = 0; r < kNRows; ++r) {
- if constexpr (!kDirectIO) {
- if (r > 0) {
- __syncthreads();
- }
- }
- store_output<Ktraits>(out + r * params.out_d_stride, out_vals[r],
- smem_store, params.seqlen - chunk * kChunkSize);
- }
- if constexpr (kHasZ) {
- input_t* z = reinterpret_cast<input_t*>(params.z_ptr) +
- batch_id * params.z_batch_stride +
- dim_id * kNRows * params.z_d_stride + chunk * kChunkSize;
- input_t* out_z = reinterpret_cast<input_t*>(params.out_z_ptr) +
- batch_id * params.out_z_batch_stride +
- dim_id * kNRows * params.out_z_d_stride +
- chunk * kChunkSize;
- #pragma unroll
- for (int r = 0; r < kNRows; ++r) {
- input_t z_vals[kNItems];
- __syncthreads();
- load_input<Ktraits>(z + r * params.z_d_stride, z_vals, smem_load,
- params.seqlen - chunk * kChunkSize);
- #pragma unroll
- for (int i = 0; i < kNItems; ++i) {
- float z_val = z_vals[i];
- out_vals[r][i] *= z_val / (1 + expf(-z_val));
- }
- __syncthreads();
- store_output<Ktraits>(out_z + r * params.out_z_d_stride, out_vals[r],
- smem_store, params.seqlen - chunk * kChunkSize);
- }
- }
- Bvar += kChunkSize * 1;
- Cvar += kChunkSize * 1;
- }
- }
- template <int kNThreads, int kNItems, typename input_t, typename weight_t>
- void selective_scan_fwd_launch(SSMParamsBase& params, cudaStream_t stream) {
- // Only kNRows == 1 is tested for now, which ofc doesn't differ from
- // previously when we had each block processing 1 row.
- constexpr int kNRows = 1;
- BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] {
- BOOL_SWITCH(params.is_variable_B, kIsVariableB, [&] {
- BOOL_SWITCH(params.is_variable_C, kIsVariableC, [&] {
- BOOL_SWITCH(params.z_ptr != nullptr, kHasZ, [&] {
- BOOL_SWITCH(params.index_ptr != nullptr, kUseIndex, [&] {
- using Ktraits = Selective_Scan_fwd_kernel_traits<
- kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB,
- kIsVariableC, kHasZ, kUseIndex, input_t, weight_t>;
- // constexpr int kSmemSize = Ktraits::kSmemSize;
- constexpr int kSmemSize =
- Ktraits::kSmemSize +
- kNRows * MAX_DSTATE * sizeof(typename Ktraits::scan_t);
- dim3 grid(params.batch, params.dim / kNRows);
- auto kernel = &selective_scan_fwd_kernel<Ktraits>;
- if (kSmemSize >= 48 * 1024) {
- C10_CUDA_CHECK(cudaFuncSetAttribute(
- kernel, cudaFuncAttributeMaxDynamicSharedMemorySize,
- kSmemSize));
- }
- kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
- C10_CUDA_KERNEL_LAUNCH_CHECK();
- });
- });
- });
- });
- });
- }
- template <typename input_t, typename weight_t>
- void selective_scan_fwd_cuda(SSMParamsBase& params, cudaStream_t stream) {
- #ifndef USE_ROCM
- if (params.seqlen <= 128) {
- selective_scan_fwd_launch<32, 4, input_t, weight_t>(params, stream);
- } else if (params.seqlen <= 256) {
- selective_scan_fwd_launch<32, 8, input_t, weight_t>(params, stream);
- } else if (params.seqlen <= 512) {
- selective_scan_fwd_launch<32, 16, input_t, weight_t>(params, stream);
- } else if (params.seqlen <= 1024) {
- selective_scan_fwd_launch<64, 16, input_t, weight_t>(params, stream);
- } else {
- selective_scan_fwd_launch<128, 16, input_t, weight_t>(params, stream);
- }
- #else
- if (params.seqlen <= 256) {
- selective_scan_fwd_launch<64, 4, input_t, weight_t>(params, stream);
- } else if (params.seqlen <= 512) {
- selective_scan_fwd_launch<64, 8, input_t, weight_t>(params, stream);
- } else if (params.seqlen <= 1024) {
- selective_scan_fwd_launch<64, 16, input_t, weight_t>(params, stream);
- } else {
- selective_scan_fwd_launch<128, 16, input_t, weight_t>(params, stream);
- }
- #endif
- }
- template void selective_scan_fwd_cuda<at::BFloat16, float>(
- SSMParamsBase& params, cudaStream_t stream);
- template void selective_scan_fwd_cuda<at::Half, float>(SSMParamsBase& params,
- cudaStream_t stream);
- template void selective_scan_fwd_cuda<float, float>(SSMParamsBase& params,
- cudaStream_t stream);
- #define CHECK_SHAPE(x, ...) \
- TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), \
- #x " must have shape (" #__VA_ARGS__ ")")
- #define DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...) \
- if (ITYPE == at::ScalarType::Half) { \
- using input_t = at::Half; \
- __VA_ARGS__(); \
- } else if (ITYPE == at::ScalarType::BFloat16) { \
- using input_t = at::BFloat16; \
- __VA_ARGS__(); \
- } else if (ITYPE == at::ScalarType::Float) { \
- using input_t = float; \
- __VA_ARGS__(); \
- } else { \
- AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), \
- "'"); \
- }
- #define DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(WTYPE, NAME, ...) \
- if (WTYPE == at::ScalarType::Half) { \
- using weight_t = at::Half; \
- __VA_ARGS__(); \
- } else if (WTYPE == at::ScalarType::BFloat16) { \
- using weight_t = at::BFloat16; \
- __VA_ARGS__(); \
- } else if (WTYPE == at::ScalarType::Float) { \
- using weight_t = float; \
- __VA_ARGS__(); \
- } else { \
- AT_ERROR(#NAME, " not implemented for weight type '", toString(WTYPE), \
- "'"); \
- }
- #define DISPATCH_WTYPE_FLOAT(WTYPE, NAME, ...) \
- if (WTYPE == at::ScalarType::Float) { \
- using weight_t = float; \
- __VA_ARGS__(); \
- } else { \
- AT_ERROR(#NAME, " not implemented for weight type '", toString(WTYPE), \
- "'"); \
- }
- template <typename input_t, typename weight_t>
- void selective_scan_fwd_cuda(SSMParamsBase& params, cudaStream_t stream);
- void set_ssm_params_fwd(SSMParamsBase& params,
- // sizes
- const size_t batch, const size_t dim,
- const size_t seqlen, const size_t dstate,
- const size_t n_groups, const size_t n_chunks,
- const bool is_variable_B, const bool is_variable_C,
- // device pointers
- const torch::Tensor u, const torch::Tensor delta,
- const torch::Tensor A, const torch::Tensor B,
- const torch::Tensor C, const torch::Tensor out,
- const torch::Tensor z, const torch::Tensor out_z,
- void* D_ptr, void* delta_bias_ptr, void* x_ptr,
- bool has_z, bool delta_softplus, void* index_ptr) {
- // Reset the parameters
- memset(¶ms, 0, sizeof(params));
- params.batch = batch;
- params.dim = dim;
- params.seqlen = seqlen;
- params.dstate = dstate;
- params.n_groups = n_groups;
- params.n_chunks = n_chunks;
- params.dim_ngroups_ratio = dim / n_groups;
- params.delta_softplus = delta_softplus;
- params.is_variable_B = is_variable_B;
- params.is_variable_C = is_variable_C;
- // Set the pointers and strides.
- params.u_ptr = u.data_ptr();
- params.delta_ptr = delta.data_ptr();
- params.A_ptr = A.data_ptr();
- params.B_ptr = B.data_ptr();
- params.C_ptr = C.data_ptr();
- params.D_ptr = D_ptr;
- params.delta_bias_ptr = delta_bias_ptr;
- params.out_ptr = out.data_ptr();
- params.x_ptr = x_ptr;
- params.z_ptr = has_z ? z.data_ptr() : nullptr;
- params.out_z_ptr = has_z ? out_z.data_ptr() : nullptr;
- params.index_ptr = index_ptr;
- // All stride are in elements, not bytes.
- params.A_d_stride = A.stride(0);
- params.A_dstate_stride = A.stride(1);
- if (!is_variable_B) {
- params.B_d_stride = B.stride(0);
- } else {
- params.B_batch_stride = B.stride(0);
- params.B_group_stride = B.stride(1);
- }
- params.B_dstate_stride = !is_variable_B ? B.stride(1) : B.stride(2);
- if (!is_variable_C) {
- params.C_d_stride = C.stride(0);
- } else {
- params.C_batch_stride = C.stride(0);
- params.C_group_stride = C.stride(1);
- }
- params.C_dstate_stride = !is_variable_C ? C.stride(1) : C.stride(2);
- params.u_batch_stride = u.stride(0);
- params.u_d_stride = u.stride(1);
- params.delta_batch_stride = delta.stride(0);
- params.delta_d_stride = delta.stride(1);
- if (has_z) {
- params.z_batch_stride = z.stride(0);
- params.z_d_stride = z.stride(1);
- params.out_z_batch_stride = out_z.stride(0);
- params.out_z_d_stride = out_z.stride(1);
- }
- params.out_batch_stride = out.stride(0);
- params.out_d_stride = out.stride(1);
- }
- std::vector<torch::Tensor> selective_scan_fwd(
- const torch::Tensor& u, const torch::Tensor& delta, const torch::Tensor& A,
- const torch::Tensor& B, const torch::Tensor& C,
- const c10::optional<torch::Tensor>& D_,
- const c10::optional<torch::Tensor>& z_,
- const c10::optional<torch::Tensor>& delta_bias_, bool delta_softplus,
- const c10::optional<torch::Tensor>& index_,
- const c10::optional<torch::Tensor>& x) {
- auto input_type = u.scalar_type();
- auto weight_type = A.scalar_type();
- TORCH_CHECK(input_type == at::ScalarType::Float ||
- input_type == at::ScalarType::Half ||
- input_type == at::ScalarType::BFloat16);
- TORCH_CHECK(weight_type == at::ScalarType::Float ||
- weight_type == at::ScalarType::ComplexFloat);
- const bool is_variable_B = B.dim() >= 3;
- const bool is_variable_C = C.dim() >= 3;
- const bool is_complex = weight_type == at::ScalarType::ComplexFloat;
- TORCH_CHECK(delta.scalar_type() == input_type);
- TORCH_CHECK(B.scalar_type() == (!is_variable_B ? weight_type : input_type));
- TORCH_CHECK(C.scalar_type() == (!is_variable_C ? weight_type : input_type));
- TORCH_CHECK(u.is_cuda());
- TORCH_CHECK(delta.is_cuda());
- TORCH_CHECK(A.is_cuda());
- TORCH_CHECK(B.is_cuda());
- TORCH_CHECK(C.is_cuda());
- TORCH_CHECK(u.stride(-1) == 1 || u.size(-1) == 1);
- TORCH_CHECK(delta.stride(-1) == 1 || delta.size(-1) == 1);
- const auto sizes = u.sizes();
- const int batch_size = sizes[0];
- const int dim = sizes[1];
- const int seqlen = sizes[2];
- const int dstate = A.size(1);
- const int n_groups = is_variable_B ? B.size(1) : 1;
- TORCH_CHECK(dstate <= 256,
- "selective_scan only supports state dimension <= 256");
- CHECK_SHAPE(u, batch_size, dim, seqlen);
- CHECK_SHAPE(delta, batch_size, dim, seqlen);
- CHECK_SHAPE(A, dim, dstate);
- if (!is_variable_B) {
- CHECK_SHAPE(B, dim, dstate);
- } else {
- CHECK_SHAPE(B, batch_size, n_groups, dstate,
- !is_complex ? seqlen : seqlen * 2);
- TORCH_CHECK(B.stride(-1) == 1 || B.size(-1) == 1);
- }
- if (!is_variable_C) {
- CHECK_SHAPE(C, dim, dstate);
- } else {
- CHECK_SHAPE(C, batch_size, n_groups, dstate,
- !is_complex ? seqlen : seqlen * 2);
- TORCH_CHECK(C.stride(-1) == 1 || C.size(-1) == 1);
- }
- if (D_.has_value()) {
- auto D = D_.value();
- TORCH_CHECK(D.scalar_type() == at::ScalarType::Float);
- TORCH_CHECK(D.is_cuda());
- TORCH_CHECK(D.stride(-1) == 1 || D.size(-1) == 1);
- CHECK_SHAPE(D, dim);
- }
- if (delta_bias_.has_value()) {
- auto delta_bias = delta_bias_.value();
- TORCH_CHECK(delta_bias.scalar_type() == at::ScalarType::Float);
- TORCH_CHECK(delta_bias.is_cuda());
- TORCH_CHECK(delta_bias.stride(-1) == 1 || delta_bias.size(-1) == 1);
- CHECK_SHAPE(delta_bias, dim);
- }
- if (index_.has_value()) {
- auto index = index_.value();
- TORCH_CHECK(index.scalar_type() == at::ScalarType::Int);
- TORCH_CHECK(index.is_cuda());
- CHECK_SHAPE(index, batch_size, seqlen);
- }
- at::Tensor z, out_z;
- const bool has_z = z_.has_value();
- if (has_z) {
- z = z_.value();
- TORCH_CHECK(z.scalar_type() == input_type);
- TORCH_CHECK(z.is_cuda());
- TORCH_CHECK(z.stride(-1) == 1 || z.size(-1) == 1);
- CHECK_SHAPE(z, batch_size, dim, seqlen);
- out_z = torch::empty_like(z);
- }
- const int n_chunks = (seqlen + 2048 - 1) / 2048;
- // const int n_chunks = (seqlen + 1024 - 1) / 1024;
- // at::Tensor out = torch::empty_like(u);
- // Right now u has BHL layout and delta has HBL layout, and we want out to
- // have HBL layout
- at::Tensor out = torch::empty_like(delta);
- if (x.has_value()) {
- auto _x = x.value();
- TORCH_CHECK(_x.scalar_type() == weight_type);
- TORCH_CHECK(_x.is_cuda());
- TORCH_CHECK(_x.stride(-1) == 1);
- CHECK_SHAPE(_x, batch_size, dim, n_chunks, dstate * 2);
- }
- SSMParamsBase params;
- set_ssm_params_fwd(
- params, batch_size, dim, seqlen, dstate, n_groups, n_chunks,
- is_variable_B, is_variable_C, u, delta, A, B, C, out, z, out_z,
- D_.has_value() ? D_.value().data_ptr() : nullptr,
- delta_bias_.has_value() ? delta_bias_.value().data_ptr() : nullptr,
- x.value().data_ptr(), has_z, delta_softplus,
- index_.has_value() ? index_.value().data_ptr() : nullptr);
- // Otherwise the kernel will be launched from cuda:0 device
- // Cast to char to avoid compiler warning about narrowing
- at::cuda::CUDAGuard device_guard{(char)u.get_device()};
- auto stream = at::cuda::getCurrentCUDAStream().stream();
- DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(
- u.scalar_type(), "selective_scan_fwd", [&] {
- DISPATCH_WTYPE_FLOAT(A.scalar_type(), "selective_scan_fwd", [&] {
- selective_scan_fwd_cuda<input_t, weight_t>(params, stream);
- });
- });
- std::vector<at::Tensor> result = {out, x.value()};
- if (has_z) {
- result.push_back(out_z);
- }
- return result;
- }
|