123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659 |
- """Implementation of SiglipVisionModel intended to be only used
- within a vision language model."""
- import math
- from typing import Iterable, Optional, Tuple
- import torch
- from aphrodite_flash_attn import flash_attn_func
- from PIL import Image
- from torch import nn
- from transformers import SiglipVisionConfig
- from transformers.models.siglip.modeling_siglip import SiglipAttention
- from xformers.ops import memory_efficient_attention
- from aphrodite.common.config import ModelConfig
- from aphrodite.common.sequence import SequenceData
- from aphrodite.common.utils import progress_bar
- from aphrodite.distributed import get_tensor_model_parallel_world_size
- from aphrodite.inputs import LLMInputs
- from aphrodite.modeling.layers.activation import get_act_fn
- from aphrodite.modeling.layers.linear import (ColumnParallelLinear,
- QKVParallelLinear,
- RowParallelLinear)
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- VocabParallelEmbedding)
- from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
- from aphrodite.multimodal.image import (cached_get_tokenizer,
- repeat_and_pad_image_tokens)
- from aphrodite.quantization import QuantizationConfig
- def get_siglip_patch_grid_length(*, image_size: int, patch_size: int) -> int:
- # Since interpolation is applied, the image size need not be divisible
- # assert image_size % patch_size == 0
- return image_size // patch_size
- def get_siglip_num_patches(*, image_size: int, patch_size: int) -> int:
- grid_length = get_siglip_patch_grid_length(image_size=image_size,
- patch_size=patch_size)
- return grid_length * grid_length
- def get_siglip_image_feature_size(hf_config: SiglipVisionConfig) -> int:
- return get_siglip_num_patches(image_size=hf_config.image_size,
- patch_size=hf_config.patch_size)
- def get_max_siglip_image_tokens(hf_config: SiglipVisionConfig) -> int:
- return get_siglip_image_feature_size(hf_config)
- def dummy_seq_data_for_siglip(
- hf_config: SiglipVisionConfig,
- seq_len: int,
- num_images: int,
- *,
- image_token_id: int,
- image_feature_size_override: Optional[int] = None,
- ):
- if image_feature_size_override is None:
- image_feature_size = get_siglip_image_feature_size(hf_config)
- else:
- image_feature_size = image_feature_size_override
- token_ids = [image_token_id] * image_feature_size * num_images
- token_ids += [0] * (seq_len - image_feature_size * num_images)
- return SequenceData(token_ids)
- def dummy_image_for_siglip(
- hf_config: SiglipVisionConfig,
- num_images: int,
- *,
- image_width_override: Optional[int] = None,
- image_height_override: Optional[int] = None,
- ):
- width = height = hf_config.image_size
- if image_width_override is not None:
- width = image_width_override
- if image_height_override is not None:
- height = image_height_override
- image = Image.new("RGB", (width, height), color=0)
- return {"image": image if num_images == 1 else [image] * num_images}
- def input_processor_for_siglip(
- model_config: ModelConfig,
- hf_config: SiglipVisionConfig,
- llm_inputs: LLMInputs,
- *,
- image_token_id: int,
- image_feature_size_override: Optional[int] = None,
- ):
- multi_modal_data = llm_inputs.get("multi_modal_data")
- if multi_modal_data is None or "image" not in multi_modal_data:
- return llm_inputs
- tokenizer = cached_get_tokenizer(model_config.tokenizer)
- if image_feature_size_override is None:
- image_data = multi_modal_data["image"]
- if isinstance(image_data, Image.Image):
- image_feature_size = get_siglip_image_feature_size(hf_config)
- elif isinstance(image_data, torch.Tensor):
- image_feature_size = image_data.shape[0]
- else:
- raise TypeError(f"Invalid image type: {type(image_data)}")
- else:
- image_feature_size = image_feature_size_override
- new_prompt, new_token_ids = repeat_and_pad_image_tokens(
- tokenizer,
- llm_inputs.get("prompt"),
- llm_inputs["prompt_token_ids"],
- image_token_id=image_token_id,
- repeat_count=image_feature_size,
- )
- # NOTE: Create a defensive copy of the original inputs
- return LLMInputs(
- prompt_token_ids=new_token_ids,
- prompt=new_prompt,
- multi_modal_data=multi_modal_data,
- )
- # Adapted from https://github.com/huggingface/transformers/blob/v4.43.3/src/transformers/models/siglip/modeling_siglip.py#L249 # noqa
- class SiglipVisionEmbeddings(nn.Module):
- def __init__(self, config: SiglipVisionConfig):
- super().__init__()
- self.config = config
- self.embed_dim = config.hidden_size
- self.image_size = config.image_size
- self.patch_size = config.patch_size
- self.patch_embedding = nn.Conv2d(
- in_channels=config.num_channels,
- out_channels=self.embed_dim,
- kernel_size=self.patch_size,
- stride=self.patch_size,
- padding="valid",
- )
- self.num_patches = (self.image_size // self.patch_size)**2
- self.num_positions = self.num_patches
- self.position_embedding = VocabParallelEmbedding(
- self.num_positions, self.embed_dim)
- self.register_buffer(
- "position_ids",
- torch.arange(self.num_positions, dtype=torch.int64).expand(
- (1, -1)),
- persistent=False,
- )
- def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int,
- width: int) -> torch.Tensor:
- """
- This method is an adapted method for SigLIP (due to SigLIP not having
- class embedding unlike other ViTs) that allows the model to interpolate
- the pre-trained position encodings such that it can be usable on higher
- resolution images.
- Source:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
- """
- position_embeddings = self.position_embedding.weight.unsqueeze(0)
- num_patches = embeddings.shape[1]
- num_positions = position_embeddings.shape[1]
- if num_patches == num_positions and height == width:
- return position_embeddings
- dim = embeddings.shape[-1]
- height = height // self.patch_size
- width = width // self.patch_size
- # we add a small number to avoid floating point error
- # in the interpolation
- # see discussion at https://github.com/facebookresearch/dino/issues/8
- height, width = height + 0.1, width + 0.1
- patch_pos_embed = position_embeddings.reshape(
- 1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)),
- dim)
- patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
- patch_pos_embed = nn.functional.interpolate(
- patch_pos_embed,
- scale_factor=(
- height / math.sqrt(num_positions),
- width / math.sqrt(num_positions),
- ),
- mode="bicubic",
- align_corners=False,
- )
- if (int(height) != patch_pos_embed.shape[-2]
- or int(width) != patch_pos_embed.shape[-1]):
- raise ValueError("Width or height does not match with "
- "the interpolated position embeddings")
- patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
- return patch_pos_embed
- def forward(self,
- pixel_values: torch.Tensor,
- interpolate_pos_encoding: bool = False) -> torch.Tensor:
- _, _, height, width = pixel_values.shape
- target_dtype = self.patch_embedding.weight.dtype
- patch_embeds = self.patch_embedding(pixel_values.to(
- dtype=target_dtype)) # shape = [*, width, grid, grid]
- embeddings = patch_embeds.flatten(2).transpose(1, 2)
- if interpolate_pos_encoding:
- embeddings = embeddings + self.interpolate_pos_encoding(
- embeddings, height, width)
- else:
- embeddings = embeddings + self.position_embedding(
- self.position_ids)
- return embeddings
- # NOTE: Not used - kept for later when we TP the ViT
- # TODO(ChristopherCho): Implement TP version of Attention
- class SiglipTPAttention(nn.Module):
- def __init__(
- self,
- config,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.config = config
- self.embed_dim = config.hidden_size
- tp_size = get_tensor_model_parallel_world_size()
- self.total_num_heads = config.num_attention_heads
- if self.total_num_heads % tp_size != 0:
- raise ValueError(
- f"Number of attention heads ({self.total_num_heads}) "
- "must be divisible by the tensor model parallel size"
- f" ({tp_size}).")
- self.num_heads = self.total_num_heads // tp_size
- self.head_dim = self.embed_dim // self.total_num_heads
- if self.head_dim * self.total_num_heads != self.embed_dim:
- raise ValueError(f"embed_dim must be divisible by num_heads (got "
- "`embed_dim`: {self.embed_dim} and `num_heads`:"
- f" {self.num_heads}).")
- self.qkv_size = self.num_heads * self.head_dim
- self.scale = self.head_dim**-0.5
- self.dropout = config.attention_dropout
- self.qkv_proj = QKVParallelLinear(
- hidden_size=self.embed_dim,
- head_size=self.head_dim,
- total_num_heads=self.total_num_heads,
- quant_config=quant_config,
- )
- self.out_proj = RowParallelLinear(
- input_size=self.embed_dim,
- output_size=self.embed_dim,
- quant_config=quant_config,
- )
- self.attn_fn = self._basic_attention_forward
- def forward(
- self,
- hidden_states: torch.Tensor,
- ) -> torch.Tensor:
- """Input shape: Batch x Time x Channel"""
- batch_size, q_len, _ = hidden_states.size()
- qkv_states, _ = self.qkv_proj(hidden_states)
- query_states, key_states, value_states = qkv_states.split(
- [self.qkv_size] * 3, dim=-1)
- attn_output = self.attn_fn(
- q=query_states,
- k=key_states,
- v=value_states,
- batch_size=batch_size,
- q_len=q_len,
- )
- attn_output, _ = self.out_proj(attn_output)
- return attn_output
- def _basic_attention_forward(self, q, k, v, batch_size, q_len):
- q = q.view(batch_size, q_len, self.num_heads,
- self.head_dim).transpose(1, 2)
- k = k.view(batch_size, q_len, self.num_heads,
- self.head_dim).transpose(1, 2)
- v = v.view(batch_size, q_len, self.num_heads,
- self.head_dim).transpose(1, 2)
- k_v_seq_len = k.shape[-2]
- attn_weights = torch.matmul(q, k.transpose(2, 3)) * self.scale
- if attn_weights.size() != (
- batch_size,
- self.num_heads,
- q_len,
- k_v_seq_len,
- ):
- raise ValueError(
- "Attention weights should be of size "
- f"{(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
- f" {attn_weights.size()}")
- # upcast attention to fp32
- attn_weights = nn.functional.softmax(attn_weights,
- dim=-1,
- dtype=torch.float32).to(q.dtype)
- attn_weights = nn.functional.dropout(attn_weights,
- p=self.dropout,
- training=self.training)
- attn_output = torch.matmul(attn_weights, v)
- if attn_output.size() != (
- batch_size,
- self.num_heads,
- q_len,
- self.head_dim,
- ):
- raise ValueError(
- "`attn_output` should be of size "
- f"{(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
- f" {attn_output.size()}")
- attn_output = attn_output.transpose(1, 2).contiguous()
- attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
- return attn_output
- # NOTE: Not used - kept for later when we TP the ViT
- # TODO(ChristopherCho): flash_attn_func is not working properly.
- # It constantly throws a CUDA error.
- class SiglipFlashAttention2(SiglipTPAttention):
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.attn_fn = self._flash_attention_forward
- # Ported from https://github.com/huggingface/transformers/blob/v4.43.3/src/transformers/models/siglip/modeling_siglip.py#L449
- # and https://github.com/huggingface/transformers/blob/v4.43.3/src/transformers/modeling_flash_attention_utils.py#L133
- def _flash_attention_forward(self, q, k, v, batch_size, q_len, *args,
- **kwargs):
- """Implements the multihead softmax attention.
- Arguments
- ---------
- q, k, v: The tensor containing the
- query, key, and value. (B, S, H, D)
- """
- q = q.view(batch_size, q_len, self.num_heads, self.head_dim)
- k = k.view(batch_size, q_len, self.num_heads, self.head_dim)
- v = v.view(batch_size, q_len, self.num_heads, self.head_dim)
- attn_output = flash_attn_func(
- q,
- k,
- v,
- dropout_p=self.dropout,
- causal=False,
- )
- attn_output = attn_output.reshape(batch_size, q_len,
- self.embed_dim).contiguous()
- return attn_output
- # NOTE: Not used - kept for later when we TP the ViT
- class SiglipSdpaAttention(SiglipTPAttention):
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.is_causal = False
- self.attn_fn = self._sdpa_attention_forward
- def _sdpa_attention_forward(self, q, k, v, batch_size, q_len):
- q = q.view(batch_size, q_len, self.num_heads,
- self.head_dim).transpose(1, 2)
- k = k.view(batch_size, q_len, self.num_heads,
- self.head_dim).transpose(1, 2)
- v = v.view(batch_size, q_len, self.num_heads,
- self.head_dim).transpose(1, 2)
- attn_output = torch.nn.functional.scaled_dot_product_attention(
- q, k, v, dropout_p=self.dropout, is_causal=False, scale=self.scale)
- attn_output = attn_output.transpose(1, 2).contiguous()
- attn_output = attn_output.view(batch_size, q_len, self.embed_dim)
- return attn_output
- # NOTE: Not used - kept for later when we TP the ViT
- class SiglipxFormersAttention(SiglipTPAttention):
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.attn_fn = self._xformers_attention_forward
- def _xformers_attention_forward(self, q, k, v, batch_size, q_len):
- q = q.view(batch_size, q_len, self.num_heads, self.head_dim)
- k = k.view(batch_size, q_len, self.num_heads, self.head_dim)
- v = v.view(batch_size, q_len, self.num_heads, self.head_dim)
- attn_output = memory_efficient_attention(q,
- k,
- v,
- p=0.0,
- scale=self.scale)
- attn_output = attn_output.reshape(batch_size, q_len,
- self.embed_dim).contiguous()
- return attn_output
- # NOTE: Not used - kept for later when we TP the ViT
- SIGLIP_ATTENTION_CLASSES = {
- "eager": SiglipTPAttention,
- "flash_attention_2": SiglipFlashAttention2,
- "sdpa": SiglipSdpaAttention,
- "xformers": SiglipxFormersAttention,
- }
- class SiglipMLP(nn.Module):
- def __init__(
- self,
- config,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.config = config
- self.activation_fn = get_act_fn(config.hidden_act)
- # For quantization, we require the hidden size to be a multiple of 64
- quantizable = (config.hidden_size % 64 == 0
- and config.intermediate_size % 64 == 0)
- self.fc1 = ColumnParallelLinear(
- config.hidden_size,
- config.intermediate_size,
- quant_config=quant_config if quantizable else None,
- )
- self.fc2 = RowParallelLinear(
- config.intermediate_size,
- config.hidden_size,
- quant_config=quant_config if quantizable else None,
- )
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states, _ = self.fc1(hidden_states)
- hidden_states = self.activation_fn(hidden_states)
- hidden_states, _ = self.fc2(hidden_states)
- return hidden_states
- class SiglipEncoderLayer(nn.Module):
- def __init__(
- self,
- config: SiglipVisionConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.embed_dim = config.hidden_size
- # TODO(ChristopherCho): use TP'ed Attention block
- self.self_attn = SiglipAttention(config)
- self.layer_norm1 = nn.LayerNorm(self.embed_dim,
- eps=config.layer_norm_eps)
- self.mlp = SiglipMLP(
- config,
- quant_config=quant_config,
- )
- self.layer_norm2 = nn.LayerNorm(self.embed_dim,
- eps=config.layer_norm_eps)
- def forward(
- self,
- hidden_states: torch.Tensor,
- ) -> Tuple[torch.Tensor, None]:
- residual = hidden_states
- hidden_states = self.layer_norm1(hidden_states)
- hidden_states, _ = self.self_attn(hidden_states=hidden_states)
- hidden_states = residual + hidden_states
- residual = hidden_states
- hidden_states = self.layer_norm2(hidden_states)
- hidden_states = self.mlp(hidden_states)
- hidden_states = residual + hidden_states
- return hidden_states, None
- class SiglipEncoder(nn.Module):
- def __init__(
- self,
- config: SiglipVisionConfig,
- quant_config: Optional[QuantizationConfig] = None,
- num_hidden_layers_override: Optional[int] = None,
- ):
- super().__init__()
- self.config = config
- if num_hidden_layers_override is None:
- num_hidden_layers = config.num_hidden_layers
- else:
- num_hidden_layers = num_hidden_layers_override
- self.layers = nn.ModuleList([
- SiglipEncoderLayer(config, quant_config=quant_config)
- for _ in range(num_hidden_layers)
- ])
- def forward(
- self,
- inputs_embeds: torch.Tensor,
- ) -> torch.Tensor:
- hidden_states = inputs_embeds
- for encoder_layer in self.layers:
- hidden_states, _ = encoder_layer(hidden_states)
- return hidden_states
- class SiglipMultiheadAttentionPoolingHead(nn.Module):
- """Multihead Attention Pooling."""
- def __init__(
- self,
- config: SiglipVisionConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
- # TODO(ChristopherCho): Implement aphrodite version of MHA
- self.attention = torch.nn.MultiheadAttention(
- config.hidden_size, config.num_attention_heads, batch_first=True)
- self.layernorm = nn.LayerNorm(config.hidden_size,
- eps=config.layer_norm_eps)
- self.mlp = SiglipMLP(config=config, quant_config=quant_config)
- def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
- batch_size = hidden_state.shape[0]
- probe = self.probe.repeat(batch_size, 1, 1)
- hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
- residual = hidden_state
- hidden_state = self.layernorm(hidden_state)
- hidden_state = residual + self.mlp(hidden_state)
- return hidden_state[:, 0]
- class SiglipVisionTransformer(nn.Module):
- def __init__(
- self,
- config: SiglipVisionConfig,
- quant_config: Optional[QuantizationConfig] = None,
- num_hidden_layers_override: Optional[int] = None,
- ):
- super().__init__()
- self.config = config
- embed_dim = config.hidden_size
- self.embeddings = SiglipVisionEmbeddings(config)
- self.encoder = SiglipEncoder(
- config,
- quant_config=quant_config,
- num_hidden_layers_override=num_hidden_layers_override,
- )
- self.post_layernorm = nn.LayerNorm(embed_dim,
- eps=config.layer_norm_eps)
- self.use_head = (True if not hasattr(config, "vision_use_head") else
- config.vision_use_head)
- if self.use_head:
- self.head = SiglipMultiheadAttentionPoolingHead(
- config=config, quant_config=quant_config)
- def forward(
- self,
- pixel_values: torch.Tensor,
- interpolate_pos_encoding: bool = True,
- ) -> torch.Tensor:
- hidden_states = self.embeddings(
- pixel_values,
- interpolate_pos_encoding=interpolate_pos_encoding,
- )
- encoder_outputs = self.encoder(inputs_embeds=hidden_states)
- last_hidden_state = self.post_layernorm(encoder_outputs)
- # TODO: add this back when pooled_output is used in inference
- # if self.use_head:
- # pooled_output = self.head(last_hidden_state)
- return last_hidden_state
- class SiglipVisionModel(nn.Module):
- config_class = SiglipVisionConfig
- main_input_name = "pixel_values"
- def __init__(
- self,
- config: SiglipVisionConfig,
- quant_config: Optional[QuantizationConfig] = None,
- num_hidden_layers_override: Optional[int] = None,
- ):
- super().__init__()
- self.vision_model = SiglipVisionTransformer(
- config,
- quant_config,
- num_hidden_layers_override=num_hidden_layers_override,
- )
- def get_input_embeddings(self) -> nn.Module:
- return self.vision_model.embeddings.patch_embedding
- def forward(
- self,
- pixel_values: torch.Tensor,
- interpolate_pos_encoding: bool = False,
- ) -> torch.Tensor:
- return self.vision_model(
- pixel_values=pixel_values,
- interpolate_pos_encoding=interpolate_pos_encoding,
- )
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- params_dict = dict(self.named_parameters())
- layer_count = len(self.vision_model.encoder.layers)
- weights_list = list(weights)
- for name, loaded_weight in progress_bar(weights_list,
- desc="Loading modules..."):
- # omit layers when num_hidden_layers_override is set
- if "vision_model.encoder.layers." in name:
- layer_idx = int(name.split(".")[3])
- if layer_idx >= layer_count:
- continue
- param = params_dict[name]
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
|