123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566 |
- import asyncio
- import time
- from typing import AsyncGenerator, AsyncIterator, Dict, List, Optional
- from typing import Sequence as GenericSequence
- from typing import Union
- from fastapi import Request
- from loguru import logger
- from transformers import PreTrainedTokenizer
- from aphrodite.common.config import ModelConfig
- from aphrodite.common.outputs import RequestOutput
- from aphrodite.common.sequence import Logprob
- from aphrodite.common.utils import iterate_with_cancellation, random_uuid
- from aphrodite.endpoints.chat_utils import (ConversationMessage,
- apply_chat_template,
- load_chat_template,
- parse_chat_messages)
- from aphrodite.endpoints.logger import RequestLogger
- from aphrodite.endpoints.openai.protocol import (
- ChatCompletionLogProb, ChatCompletionLogProbs,
- ChatCompletionLogProbsContent, ChatCompletionNamedToolChoiceParam,
- ChatCompletionRequest, ChatCompletionResponse,
- ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice,
- ChatCompletionStreamResponse, ChatMessage, DeltaMessage, ErrorResponse,
- FunctionCall, ToolCall, UsageInfo)
- from aphrodite.endpoints.openai.serving_engine import (LoRAModulePath,
- OpenAIServing,
- PromptAdapterPath,
- TextTokensPrompt)
- from aphrodite.engine.protocol import AsyncEngineClient
- from aphrodite.inputs import PromptInputs
- from aphrodite.multimodal import MultiModalDataDict
- class OpenAIServingChat(OpenAIServing):
- def __init__(
- self,
- async_engine_client: AsyncEngineClient,
- model_config: ModelConfig,
- served_model_names: List[str],
- response_role: str,
- *,
- lora_modules: Optional[List[LoRAModulePath]],
- prompt_adapters: Optional[List[PromptAdapterPath]],
- request_logger: Optional[RequestLogger],
- chat_template: Optional[str],
- return_tokens_as_token_ids: bool = False,
- ):
- super().__init__(async_engine_client=async_engine_client,
- model_config=model_config,
- served_model_names=served_model_names,
- lora_modules=lora_modules,
- prompt_adapters=prompt_adapters,
- request_logger=request_logger,
- return_tokens_as_token_ids=return_tokens_as_token_ids)
- self.response_role = response_role
- # If this is None we use the tokenizer's default chat template
- self.chat_template = load_chat_template(chat_template)
- async def create_chat_completion(
- self,
- request: ChatCompletionRequest,
- raw_request: Optional[Request] = None
- ) -> Union[ErrorResponse, AsyncGenerator[str, None],
- ChatCompletionResponse]:
- """Completion API similar to OpenAI's API.
- See https://platform.openai.com/docs/api-reference/chat/create
- for the API specification. This API mimics the OpenAI
- ChatCompletion API.
- NOTE: Currently we do not support the following feature:
- - function_call (Users should implement this by themselves)
- """
- error_check_ret = await self._check_model(request)
- if error_check_ret is not None:
- return error_check_ret
- if request.prompt_logprobs is not None:
- if request.stream and request.prompt_logprobs > 0:
- return self.create_error_response(
- "Prompt_logprobs are not available when stream is enabled")
- if request.prompt_logprobs < 0:
- return self.create_error_response(
- f"Prompt_logprobs set to invalid "
- f"negative value: {request.prompt_logprobs}")
- try:
- (
- lora_request,
- prompt_adapter_request,
- ) = self._maybe_get_adapters(request)
- model_config = self.model_config
- tokenizer = await self.async_engine_client.get_tokenizer(
- lora_request)
- conversation, mm_futures = parse_chat_messages(
- request.messages, model_config, tokenizer)
- tool_dicts = None if request.tools is None else [
- tool.model_dump() for tool in request.tools
- ]
- prompt = apply_chat_template(
- tokenizer,
- conversation=conversation,
- chat_template=request.chat_template or self.chat_template,
- add_generation_prompt=request.add_generation_prompt,
- tools=tool_dicts,
- documents=request.documents,
- **(request.chat_template_kwargs or {}),
- )
- except Exception as e:
- logger.error(f"Error in applying chat template from request: {e}")
- return self.create_error_response(str(e))
- mm_data: Optional[MultiModalDataDict] = None
- try:
- if len(mm_futures):
- # since we support only single mm data currently
- assert len(
- mm_futures
- ) == 1, "Multiple 'image_url' input is currently not supported."
- mm_data = await mm_futures[0]
- except Exception as e:
- logger.error(f"Error in loading multi-modal data: {e}")
- return self.create_error_response(str(e))
- request_id = f"chat-{random_uuid()}"
- try:
- guided_decode_logits_processor = (
- await self._guided_decode_logits_processor(request, tokenizer))
- if isinstance(prompt, str):
- prompt_inputs = self._tokenize_prompt_input(
- request,
- tokenizer,
- prompt,
- truncate_prompt_tokens=request.truncate_prompt_tokens,
- add_special_tokens=request.add_special_tokens,
- )
- else:
- assert isinstance(prompt, list) and isinstance(
- prompt[0], int
- ), "Prompt has to be either a string or a list of token ids"
- prompt_inputs = TextTokensPrompt(
- prompt=tokenizer.decode(prompt), prompt_token_ids=prompt)
- assert prompt_inputs is not None
- sampling_params = request.to_sampling_params(
- tokenizer,
- guided_decode_logits_processor,
- default_max_tokens=self.max_model_len -
- len(prompt_inputs["prompt_token_ids"]))
- self._log_inputs(request_id,
- prompt_inputs,
- params=sampling_params,
- lora_request=lora_request,
- prompt_adapter_request=prompt_adapter_request)
- engine_inputs: PromptInputs = {
- "prompt_token_ids": prompt_inputs["prompt_token_ids"],
- }
- if mm_data is not None:
- engine_inputs["multi_modal_data"] = mm_data
- result_generator = self.async_engine_client.generate(
- engine_inputs,
- sampling_params,
- request_id,
- lora_request=lora_request,
- prompt_adapter_request=prompt_adapter_request,
- )
- except ValueError as e:
- # TODO: Use an aphrodite-specific Validation Error
- return self.create_error_response(str(e))
- if raw_request:
- result_generator = iterate_with_cancellation(
- result_generator, raw_request.is_disconnected)
- # Streaming response
- if request.stream:
- return self.chat_completion_stream_generator(
- request, result_generator, request_id, conversation, tokenizer)
- try:
- return await self.chat_completion_full_generator(
- request, result_generator, request_id, conversation, tokenizer)
- except ValueError as e:
- # TODO: Use an aphrodite-specific Validation Error
- return self.create_error_response(str(e))
- def get_chat_request_role(self, request: ChatCompletionRequest) -> str:
- if request.add_generation_prompt:
- return self.response_role
- else:
- return request.messages[-1]["role"]
- async def chat_completion_stream_generator(
- self,
- request: ChatCompletionRequest,
- result_generator: AsyncIterator[RequestOutput],
- request_id: str,
- conversation: List[ConversationMessage],
- tokenizer: PreTrainedTokenizer,
- ) -> AsyncGenerator[str, None]:
- model_name = self.served_model_names[0]
- created_time = int(time.time())
- chunk_object_type = "chat.completion.chunk"
- first_iteration = True
- # Send response for each token for each request.n (index)
- num_choices = 1 if request.n is None else request.n
- previous_texts = [""] * num_choices
- previous_num_tokens = [0] * num_choices
- finish_reason_sent = [False] * num_choices
- try:
- async for res in result_generator:
- # We need to do it here, because if there are exceptions in
- # the result_generator, it needs to be sent as the FIRST
- # response (by the try...catch).
- if first_iteration:
- # Send first response for each request.n (index) with
- # the role
- role = self.get_chat_request_role(request)
- for i in range(num_choices):
- choice_data = ChatCompletionResponseStreamChoice(
- index=i,
- delta=DeltaMessage(role=role),
- logprobs=None,
- finish_reason=None)
- chunk = ChatCompletionStreamResponse(
- id=request_id,
- object=chunk_object_type,
- created=created_time,
- choices=[choice_data],
- model=model_name)
- if (request.stream_options
- and request.stream_options.include_usage):
- if (request.stream_options.continuous_usage_stats):
- prompt_tokens = len(res.prompt_token_ids)
- usage = UsageInfo(prompt_tokens=prompt_tokens,
- completion_tokens=0,
- total_tokens=prompt_tokens)
- chunk.usage = usage
- else:
- chunk.usage = None
- data = chunk.model_dump_json(exclude_unset=True)
- yield f"data: {data}\n\n"
- # Send response to echo the input portion of the
- # last message
- if request.echo:
- last_msg_content = ""
- if conversation and conversation[-1].get(
- "content") and conversation[-1].get(
- "role") == role:
- last_msg_content = conversation[-1]["content"]
- if last_msg_content:
- for i in range(num_choices):
- choice_data = (
- ChatCompletionResponseStreamChoice(
- index=i,
- delta=DeltaMessage(
- content=last_msg_content),
- logprobs=None,
- finish_reason=None))
- chunk = ChatCompletionStreamResponse(
- id=request_id,
- object=chunk_object_type,
- created=created_time,
- choices=[choice_data],
- model=model_name)
- if (request.stream_options and
- request.stream_options.include_usage):
- if (request.stream_options.
- continuous_usage_stats):
- prompt_tokens = len(
- res.prompt_token_ids)
- usage = UsageInfo(
- prompt_tokens=prompt_tokens,
- completion_tokens=0,
- total_tokens=prompt_tokens)
- chunk.usage = usage
- else:
- chunk.usage = None
- data = chunk.model_dump_json(
- exclude_unset=True)
- yield f"data: {data}\n\n"
- first_iteration = False
- for output in res.outputs:
- i = output.index
- if finish_reason_sent[i]:
- continue
- delta_token_ids = output.token_ids[previous_num_tokens[i]:]
- out_logprobs = output.logprobs[
- previous_num_tokens[i]:] if output.logprobs else None
- if request.logprobs and request.top_logprobs is not None:
- assert out_logprobs is not None, (
- "Did not output logprobs")
- logprobs = self._create_chat_logprobs(
- token_ids=delta_token_ids,
- top_logprobs=out_logprobs,
- tokenizer=tokenizer,
- num_output_top_logprobs=request.top_logprobs,
- )
- else:
- logprobs = None
- delta_text = output.text[len(previous_texts[i]):]
- previous_texts[i] = output.text
- previous_num_tokens[i] = len(output.token_ids)
- if request.tool_choice and type(
- request.tool_choice
- ) is ChatCompletionNamedToolChoiceParam:
- delta_message = DeltaMessage(tool_calls=[
- ToolCall(function=FunctionCall(
- name=request.tool_choice.function.name,
- arguments=delta_text))
- ])
- else:
- delta_message = DeltaMessage(content=delta_text)
- if output.finish_reason is None:
- # Send token-by-token response for each request.n
- choice_data = ChatCompletionResponseStreamChoice(
- index=i,
- delta=delta_message,
- logprobs=logprobs,
- finish_reason=None)
- chunk = ChatCompletionStreamResponse(
- id=request_id,
- object=chunk_object_type,
- created=created_time,
- choices=[choice_data],
- model=model_name)
- if (request.stream_options
- and request.stream_options.include_usage):
- if (request.stream_options.continuous_usage_stats):
- prompt_tokens = len(res.prompt_token_ids)
- completion_tokens = len(output.token_ids)
- usage = UsageInfo(
- prompt_tokens=prompt_tokens,
- completion_tokens=completion_tokens,
- total_tokens=prompt_tokens +
- completion_tokens,
- )
- chunk.usage = usage
- else:
- chunk.usage = None
- data = chunk.model_dump_json(exclude_unset=True)
- yield f"data: {data}\n\n"
- else:
- # Send the finish response for each request.n only once
- prompt_tokens = len(res.prompt_token_ids)
- choice_data = ChatCompletionResponseStreamChoice(
- index=i,
- delta=delta_message,
- logprobs=logprobs,
- finish_reason=output.finish_reason,
- stop_reason=output.stop_reason)
- chunk = ChatCompletionStreamResponse(
- id=request_id,
- object=chunk_object_type,
- created=created_time,
- choices=[choice_data],
- model=model_name)
- if (request.stream_options
- and request.stream_options.include_usage):
- if (request.stream_options.continuous_usage_stats):
- prompt_tokens = len(res.prompt_token_ids)
- completion_tokens = len(output.token_ids)
- usage = UsageInfo(
- prompt_tokens=prompt_tokens,
- completion_tokens=completion_tokens,
- total_tokens=prompt_tokens +
- completion_tokens,
- )
- chunk.usage = usage
- else:
- chunk.usage = None
- data = chunk.model_dump_json(exclude_unset=True)
- yield f"data: {data}\n\n"
- finish_reason_sent[i] = True
- if (request.stream_options
- and request.stream_options.include_usage):
- final_usage = UsageInfo(
- prompt_tokens=prompt_tokens,
- completion_tokens=previous_num_tokens[i],
- total_tokens=prompt_tokens + previous_num_tokens[i],
- )
- final_usage_chunk = ChatCompletionStreamResponse(
- id=request_id,
- object=chunk_object_type,
- created=created_time,
- choices=[],
- model=model_name,
- usage=final_usage)
- final_usage_data = (final_usage_chunk.model_dump_json(
- exclude_unset=True, exclude_none=True))
- yield f"data: {final_usage_data}\n\n"
- except ValueError as e:
- # TODO: Use an aphrodite-specific Validation Error
- data = self.create_streaming_error_response(str(e))
- yield f"data: {data}\n\n"
- # Send the final done message after all response.n are finished
- yield "data: [DONE]\n\n"
- async def chat_completion_full_generator(
- self,
- request: ChatCompletionRequest,
- result_generator: AsyncIterator[RequestOutput],
- request_id: str,
- conversation: List[ConversationMessage],
- tokenizer: PreTrainedTokenizer,
- ) -> Union[ErrorResponse, ChatCompletionResponse]:
- model_name = self.served_model_names[0]
- created_time = int(time.time())
- final_res: Optional[RequestOutput] = None
- try:
- async for res in result_generator:
- final_res = res
- except asyncio.CancelledError:
- return self.create_error_response("Client disconnected")
- assert final_res is not None
- choices: List[ChatCompletionResponseChoice] = []
- role = self.get_chat_request_role(request)
- for output in final_res.outputs:
- token_ids = output.token_ids
- out_logprobs = output.logprobs
- if request.logprobs and request.top_logprobs is not None:
- assert out_logprobs is not None, "Did not output logprobs"
- logprobs = self._create_chat_logprobs(
- token_ids=token_ids,
- top_logprobs=out_logprobs,
- tokenizer=tokenizer,
- num_output_top_logprobs=request.top_logprobs,
- )
- else:
- logprobs = None
- if request.tool_choice and type(
- request.tool_choice) is ChatCompletionNamedToolChoiceParam:
- message = ChatMessage(
- role=role,
- content="",
- tool_calls=[
- ToolCall(function=FunctionCall(
- name=request.tool_choice.function.name,
- arguments=output.text))
- ])
- elif not request.tool_choice or request.tool_choice == "none":
- message = ChatMessage(role=role, content=output.text)
- choice_data = ChatCompletionResponseChoice(
- index=output.index,
- message=message,
- logprobs=logprobs,
- finish_reason=output.finish_reason,
- stop_reason=output.stop_reason)
- choices.append(choice_data)
- if request.echo:
- last_msg_content = ""
- if conversation and conversation[-1].get(
- "content") and conversation[-1].get("role") == role:
- last_msg_content = conversation[-1]["content"]
- for choice in choices:
- full_message = last_msg_content + choice.message.content
- choice.message.content = full_message
- num_prompt_tokens = len(final_res.prompt_token_ids)
- num_generated_tokens = sum(
- len(output.token_ids) for output in final_res.outputs)
- usage = UsageInfo(
- prompt_tokens=num_prompt_tokens,
- completion_tokens=num_generated_tokens,
- total_tokens=num_prompt_tokens + num_generated_tokens,
- )
- response = ChatCompletionResponse(
- id=request_id,
- created=created_time,
- model=model_name,
- choices=choices,
- usage=usage,
- prompt_logprobs=final_res.prompt_logprobs,
- )
- return response
- def _get_top_logprobs(
- self, logprobs: Dict[int, Logprob], top_logprobs: Optional[int],
- tokenizer: PreTrainedTokenizer) -> List[ChatCompletionLogProb]:
- return [
- ChatCompletionLogProb(token=(token := self._get_decoded_token(
- p[1],
- p[0],
- tokenizer,
- return_as_token_id=self.return_tokens_as_token_ids)),
- logprob=max(p[1].logprob, -9999.0),
- bytes=list(
- token.encode("utf-8", errors="replace")))
- for i, p in enumerate(logprobs.items())
- if top_logprobs and i < top_logprobs
- ]
- def _create_chat_logprobs(
- self,
- token_ids: GenericSequence[int],
- top_logprobs: GenericSequence[Optional[Dict[int, Logprob]]],
- tokenizer: PreTrainedTokenizer,
- num_output_top_logprobs: Optional[int] = None,
- ) -> ChatCompletionLogProbs:
- """Create OpenAI-style logprobs."""
- logprobs_content = []
- for i, token_id in enumerate(token_ids):
- step_top_logprobs = top_logprobs[i]
- if step_top_logprobs is None:
- token = tokenizer.decode(token_id)
- if self.return_tokens_as_token_ids:
- token = f"token_id:{token_id}"
- logprobs_content.append(
- ChatCompletionLogProbsContent(
- token=token,
- bytes=list(token.encode("utf-8", errors="replace"))))
- else:
- logprobs_content.append(
- ChatCompletionLogProbsContent(
- token=self._get_decoded_token(
- step_top_logprobs[token_id], token_id, tokenizer,
- self.return_tokens_as_token_ids),
- logprob=max(step_top_logprobs[token_id].logprob,
- -9999.0),
- bytes=list(
- step_top_logprobs[token_id].decoded_token.encode(
- "utf-8", errors="replace")),
- top_logprobs=self._get_top_logprobs(
- step_top_logprobs, num_output_top_logprobs,
- tokenizer)))
- return ChatCompletionLogProbs(content=logprobs_content)
|