123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294 |
- """This file is used for /tests and /benchmarks"""
- import numpy
- import torch
- SUPPORTED_NUM_BITS = [4, 8]
- SUPPORTED_GROUP_SIZES = [-1, 32, 64, 128]
- def get_pack_factor(num_bits):
- assert num_bits in SUPPORTED_NUM_BITS, f"Unsupported num_bits = {num_bits}"
- return 32 // num_bits
- def permute_rows(q_w: torch.Tensor, w_ref: torch.Tensor, group_size: int):
- assert q_w.shape == w_ref.shape
- orig_device = q_w.device
- k_size, _ = q_w.shape
- g_idx = torch.zeros((k_size, ), dtype=torch.int32)
- for i in range(k_size):
- g_idx[i] = i // group_size
- # Simulate act_order by doing a random permutation on K
- rand_perm = torch.randperm(k_size)
- g_idx = g_idx[rand_perm].contiguous()
- q_w = q_w[rand_perm, :].contiguous()
- w_ref = w_ref[rand_perm, :].contiguous()
- return (
- w_ref.to(device=orig_device),
- q_w.to(device=orig_device),
- g_idx.to(device=orig_device),
- rand_perm.to(device=orig_device),
- )
- def quantize_weights(w: torch.Tensor, num_bits: int, group_size: int,
- act_order: bool):
- orig_device = w.device
- size_k, size_n = w.shape
- assert w.is_floating_point(), "w must be float"
- assert num_bits in SUPPORTED_NUM_BITS, f"Unsupported num_bits = {num_bits}"
- assert group_size in SUPPORTED_GROUP_SIZES + [
- size_k
- ], f"Unsupported groupsize = {group_size}"
- if group_size == -1:
- group_size = size_k
- assert group_size <= size_k
- max_q_val = 2**num_bits - 1
- half_q_val = (max_q_val + 1) // 2
- # Reshape to [groupsize, -1]
- if group_size < size_k:
- w = w.reshape((-1, group_size, size_n))
- w = w.permute(1, 0, 2)
- w = w.reshape((group_size, -1))
- # Compute scale for each group
- s = torch.max(torch.abs(w), 0, keepdim=True)[0]
- s *= 2 / max_q_val # 2 => symmetric
- # Quantize
- q_w = torch.round(w / s).int()
- q_w += half_q_val
- q_w = torch.clamp(q_w, 0, max_q_val)
- # Compute ref (dequantized)
- w_ref = (q_w - half_q_val).half() * s
- # Restore original shapes
- if group_size < size_k:
- def reshape_w(w):
- w = w.reshape((group_size, -1, size_n))
- w = w.permute(1, 0, 2)
- w = w.reshape((size_k, size_n)).contiguous()
- return w
- q_w = reshape_w(q_w)
- w_ref = reshape_w(w_ref)
- s = s.reshape((-1, size_n)).contiguous()
- # Apply act_order
- g_idx = torch.empty(0, dtype=torch.int, device=w.device)
- rand_perm = torch.empty(0, dtype=torch.int, device=w.device)
- if act_order:
- assert (
- group_size < size_k
- ), "For act_order, groupsize = {} must be less than size_k = {}".format(
- group_size, size_k)
- w_ref, q_w, g_idx, rand_perm = permute_rows(q_w, w_ref, group_size)
- return (
- w_ref.to(device=orig_device),
- q_w.to(device=orig_device),
- s.to(device=orig_device),
- g_idx.to(device=orig_device),
- rand_perm.to(device=orig_device),
- )
- def quantize_weights_with_zp(w: torch.Tensor, num_bits: int, group_size: int):
- orig_device = w.device
- size_k, size_n = w.shape
- assert w.is_floating_point(), "w must be float"
- assert num_bits in SUPPORTED_NUM_BITS, f"Unsupported num_bits = {num_bits}"
- assert group_size in SUPPORTED_GROUP_SIZES + [
- size_k
- ], f"Unsupported groupsize = {group_size}"
- if group_size == -1:
- group_size = size_k
- assert group_size <= size_k
- max_q_val = 2**num_bits - 1
- min_q_val = 0
- # Reshape to [groupsize, -1]
- if group_size < size_k:
- w = w.reshape((-1, group_size, size_n))
- w = w.permute(1, 0, 2)
- w = w.reshape((group_size, -1))
- # Compute scale for each group
- max = torch.max(w, 0, keepdim=True)[0]
- min = torch.min(w, 0, keepdim=True)[0]
- s = (max - min).clamp(min=1e-5) / max_q_val
- # Compute zero-point for each group
- zp = (-torch.round(min / s)).clamp(min_q_val, max_q_val).int()
- # Quantize
- q_w = torch.round(w / s).int() + zp
- q_w = torch.clamp(q_w, min_q_val, max_q_val)
- # Compute ref (dequantized)
- w_ref = (q_w - zp).half() * s
- # Restore original shapes
- if group_size < size_k:
- def reshape_w(w):
- w = w.reshape((group_size, -1, size_n))
- w = w.permute(1, 0, 2)
- w = w.reshape((size_k, size_n)).contiguous()
- return w
- q_w = reshape_w(q_w)
- w_ref = reshape_w(w_ref)
- s = s.reshape((-1, size_n)).contiguous()
- zp = zp.reshape((-1, size_n)).contiguous()
- return (
- w_ref.to(device=orig_device),
- q_w.to(device=orig_device),
- s.to(device=orig_device),
- zp.to(device=orig_device),
- )
- def sort_weights(q_w: torch.Tensor, g_idx: torch.Tensor):
- orig_device = q_w.device
- sort_indices = torch.argsort(g_idx).to(
- dtype=torch.int32) # Sort based on g_idx
- g_idx = g_idx[sort_indices].contiguous()
- q_w = q_w[sort_indices, :].contiguous()
- return (
- q_w.to(device=orig_device),
- g_idx.to(device=orig_device),
- sort_indices.to(device=orig_device),
- )
- def pack_rows(
- q_w: torch.Tensor,
- num_bits: int,
- size_k: int,
- size_n: int,
- ):
- assert q_w.shape == (size_k, size_n)
- pack_factor = get_pack_factor(num_bits)
- assert size_k % pack_factor == 0
- orig_device = q_w.device
- q_w = q_w.cpu().numpy().astype(numpy.uint32)
- q_res = numpy.zeros((size_k // pack_factor, size_n), dtype=numpy.uint32)
- for i in range(pack_factor):
- q_res |= q_w[i::pack_factor, :] << num_bits * i
- q_res = torch.from_numpy(q_res.astype(numpy.int32)).to(orig_device)
- return q_res
- def pack_cols(
- q_w: torch.Tensor,
- num_bits: int,
- size_k: int,
- size_n: int,
- ):
- assert q_w.shape == (size_k, size_n)
- pack_factor = get_pack_factor(num_bits)
- assert size_n % pack_factor == 0
- orig_device = q_w.device
- q_w = q_w.cpu().numpy().astype(numpy.uint32)
- q_res = numpy.zeros((size_k, size_n // pack_factor), dtype=numpy.uint32)
- for i in range(pack_factor):
- q_res |= q_w[:, i::pack_factor] << num_bits * i
- q_res = torch.from_numpy(q_res.astype(numpy.int32)).to(orig_device)
- q_res = q_res.contiguous()
- return q_res
- def unpack_cols(
- packed_q_w: torch.Tensor,
- num_bits: int,
- size_k: int,
- size_n: int,
- ):
- pack_factor = get_pack_factor(num_bits)
- assert size_n % pack_factor == 0
- assert packed_q_w.shape == (
- size_k, size_n // pack_factor
- ), "packed_q_w.shape = {} size_k = {}, size_n = {} pack_Factor = {}".format(
- packed_q_w.shape, size_k, size_n, pack_factor)
- orig_device = packed_q_w.device
- packed_q_w_cpu = packed_q_w.cpu().numpy().astype(numpy.uint32)
- q_res = numpy.zeros((size_k, size_n), dtype=numpy.uint32)
- mask = (1 << num_bits) - 1
- for i in range(pack_factor):
- vals = packed_q_w_cpu & mask
- packed_q_w_cpu >>= num_bits
- q_res[:, i::pack_factor] = vals
- q_res = torch.from_numpy(q_res.astype(numpy.int32)).to(orig_device)
- q_res = q_res.contiguous()
- return q_res
- def gptq_pack(
- q_w: torch.Tensor,
- num_bits: int,
- size_k: int,
- size_n: int,
- ):
- return pack_rows(q_w, num_bits, size_k, size_n)
- def awq_pack(
- q_w: torch.Tensor,
- num_bits: int,
- size_k: int,
- size_n: int,
- ):
- assert q_w.shape == (size_k, size_n)
- # Interleave column dim (for the dequantize code) and pack it to int32
- if num_bits == 4:
- interleave = numpy.array([0, 2, 4, 6, 1, 3, 5, 7])
- elif num_bits == 8:
- interleave = numpy.array([0, 2, 1, 3])
- else:
- raise Exception("num_bits must be 4 or 8, got {}".format(num_bits))
- q_w = q_w.reshape((-1, len(interleave)))[:, interleave].ravel()
- q_w = q_w.reshape((-1, size_n)).contiguous()
- return pack_cols(q_w, num_bits, size_k, size_n)
|