123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465 |
- """Utility functions used for tests and benchmarks"""
- import random
- from typing import List
- import numpy
- import torch
- from .marlin_utils_test import marlin_weights
- from .quant_utils import quantize_weights
- # This is PyTorch implementation of main part of reorder_meta()
- # function, from tools/util/include/cutlass/util/host_reorder.h file
- # of CUTLASS source tree. Furthermore, CUTLASS template for sparse
- # GEMM decides upon layout of this matrix, and at the moment for the
- # sparse GEMM executed on tensor cores, this is layout described by
- # ColumnMajorInterleaved<2> data structure, in
- # include/cutlass/layout/matrix.h of CUTLASS source tree. The
- # reordering of meta matrix into meta_reordered matrix calculated
- # according to these segments of CUTLASS code is re-implemented here.
- # Note that this calculation produces offsets for scattering metadata
- # matrix elements into reordered metadata matrix elements (or,
- # equivalently, for gathering reordered metadata matrix element back
- # into metadata matrix elements).
- def _calculate_meta_reordering_scatter_offsets(m, meta_ncols, meta_dtype,
- device):
- dst_rows = torch.arange(0, m, device=device)[:, None].repeat(1, meta_ncols)
- dst_cols = torch.arange(0, meta_ncols, device=device).repeat(m, 1)
- # Reorder the rows, then swizzle the 2x2 blocks.
- group_x = 64
- group_y = 32 if meta_dtype.itemsize == 2 else 16
- dst_rows = (dst_rows // group_x * group_x + (dst_rows % 2) * 2 +
- (dst_rows % 8) // 4 + ((dst_rows % group_y) % 4) // 2 * 32 +
- ((dst_rows % group_x) // 8) * 4)
- topright = ((dst_rows % 2 == 0) & (dst_cols % 2 == 1)).to(torch.int8)
- bottomleft = ((dst_rows % 2 == 1) & (dst_cols % 2 == 0)).to(torch.int8)
- dst_rows += topright - bottomleft
- dst_cols -= topright - bottomleft
- # Assumed that meta tensor is to be stored in CUTLASS
- # InterleavedColumnMajor layout, and reverse engineered
- # corresponding code to store values into this tensor.
- interleave = 2
- cols_maj = dst_cols // interleave
- cols_min = dst_cols % interleave
- return (cols_maj * m * interleave + dst_rows * interleave +
- cols_min).view(-1)
- # This function converts dense matrix into sparse semi-structured
- # representation, producing "compressed" matrix, in the layout used by
- # CUTLASS backend, and corresponding metadata matrix.
- def sparse_semi_structured_from_dense_cutlass(dense):
- if dense.dim() != 2:
- raise RuntimeError(
- f"Expected 2-dimensional dense tensor, got {dense.dim()}-dimensional tensor" # noqa: E501
- )
- m, k = dense.shape
- device = dense.device
- meta_dtype = torch.int8
- if dense.dtype == torch.int8:
- meta_dtype = torch.int32
- elif dense.dtype in [torch.half, torch.bfloat16, torch.float, torch.int32]:
- meta_dtype = torch.int16
- else:
- raise RuntimeError(f"Invalid datatype {dense.dtype} of dense matrix")
- quadbits_per_meta_elem = meta_dtype.itemsize * 8 // 4
- if quadbits_per_meta_elem not in (4, 8):
- raise RuntimeError(
- "Invalid number of elements per meta element calculated")
- if meta_dtype == torch.int32:
- if m % 16 != 0:
- raise RuntimeError(
- f"Number of rows of dense matrix {m} must be divisible by 16")
- else:
- if m % 32 != 0:
- raise RuntimeError(
- f"Number of rows of dense matrix {m} must be divisible by 32")
- if k % (4 * quadbits_per_meta_elem) != 0:
- raise RuntimeError(
- f"Number of columns of dense matrix {k} must be divisible by {4 * quadbits_per_meta_elem}" # noqa: E501
- )
- if dense.dtype != torch.float:
- ksparse = 4
- dense_4 = dense.view(-1, k // ksparse, ksparse)
- m0, m1, m2, m3 = (dense_4 != 0).unbind(-1)
- else:
- ksparse = 2
- dense_2 = dense.view(-1, k // ksparse, ksparse)
- m0, m2 = m1, m3 = (dense_2 != 0).unbind(-1)
- meta_ncols = k // (ksparse * quadbits_per_meta_elem)
- # Encoding quadruples of True/False values as follows:
- # [True, True, False, False] -> 0b0100
- # [True, False, True, False] -> 0b1000
- # [False, True, True, False] -> 0b1001
- # [True, False, False, True ] -> 0b1100
- # [False, True, False, True ] -> 0b1101
- # [False, False, True, True ] -> 0b1110
- # Thus, lower two bits in the encoding are index of the True value
- # at the lowest index in the quadruple, and the higher two bits in
- # the encoding are index of the other True value in the quadruple.
- # In case there are less than two True values, than False value or
- # values at some index or indices are considered True for the
- # encoding. In case there are more than two True values, then the
- # excess True value(s) at some indices are considered False for
- # the encoding. The exact encodings used for these cases are as
- # follows:
- # [False, False, False, False] -> 0b1110
- # [False, False, False, True ] -> 0b1110
- # [False, False, True, False] -> 0b1110
- # [False, True, False, False] -> 0b1001
- # [False, True, True, True ] -> 0b1101
- # [True, False, False, False] -> 0b1000
- # [True, False, True, True ] -> 0b1100
- # [True, True, False, True ] -> 0b0100
- # [True, True, True, False] -> 0b0100
- # [True, True, True, True ] -> 0b0100
- # These particular encodings are chosen, with the help of Espresso
- # logic minimizer software, for the purpose of minimization of
- # corresponding Boolean functions, that translate non-zero flags
- # into encoding bits. Note also possible choices for the first
- # and last of these encodings were limited only to (0b0100,
- # 0b1110), in order to produce valid encodings for 1:2 sparsity
- # case.
- expr0 = m0 & m1
- expr1 = ~m0 & m1
- expr2 = ~m0 & ~m1
- bit0 = expr1
- bit1 = expr2
- bit2 = expr0 | expr2 | m3
- bit3 = expr1 | ~m1
- idxs0 = bit0 | (bit1.to(torch.int64) << 1)
- idxs1 = bit2 | (bit3.to(torch.int64) << 1)
- if dense.dtype != torch.float:
- sparse0 = dense_4.gather(
- -1, idxs0.unsqueeze(-1)) # type: ignore[possibly-undefined]
- sparse1 = dense_4.gather(-1, idxs1.unsqueeze(-1))
- sparse = torch.stack((sparse0, sparse1), dim=-1).view(m, k // 2)
- else:
- sparse = dense_2.gather(-1,
- idxs0.unsqueeze(-1) // 2).view(
- m,
- k // 2) # type: ignore[possibly-undefined]
- meta_4 = idxs0 | (idxs1 << 2)
- meta_n = meta_4.view(
- (-1, meta_ncols, quadbits_per_meta_elem)).to(meta_dtype)
- if quadbits_per_meta_elem == 4:
- meta = (meta_n[:, :, 0]
- | (meta_n[:, :, 1] << 4)
- | (meta_n[:, :, 2] << 8)
- | (meta_n[:, :, 3] << 12))
- elif quadbits_per_meta_elem == 8:
- meta = (meta_n[:, :, 0]
- | (meta_n[:, :, 1] << 4)
- | (meta_n[:, :, 2] << 8)
- | (meta_n[:, :, 3] << 12)
- | (meta_n[:, :, 4] << 16)
- | (meta_n[:, :, 5] << 20)
- | (meta_n[:, :, 6] << 24)
- | (meta_n[:, :, 7] << 28))
- # Reorder meta tensor elements.
- meta_reordered = meta.new_empty(
- (m * meta_ncols, )) # type: ignore[possibly-undefined]
- meta_offsets = _calculate_meta_reordering_scatter_offsets(
- m, meta_ncols, meta_dtype, device)
- meta_reordered.scatter_(0, meta_offsets, meta.view(-1))
- return (sparse, meta_reordered.view(m, meta_ncols))
- # This function performs reverse of the function above - it
- # reconstructs dense matrix from a pair of "compressed" matrix, given
- # in the layout used by CUTLASS backend, and accompanying metadata
- # matrix.
- def sparse_semi_structured_to_dense_cutlass(sparse, meta_reordered):
- if sparse.dim() != 2:
- raise RuntimeError(
- f"Expected 2-dimensional sparse tensor, got {sparse.dim()}-dimensional tensor" # noqa: E501
- )
- m, k = sparse.shape
- device = sparse.device
- if meta_reordered.dim() != 2:
- raise RuntimeError(
- f"Expected 2-dimensional meta tensor, got {meta_reordered.dim()}-dimensional tensor" # noqa: E501
- )
- if meta_reordered.device != device:
- raise RuntimeError(
- f"Expected meta matrix to be on {device} device, got matrix on {meta_reordered.device} device" # noqa: E501
- )
- meta_dtype = meta_reordered.dtype
- if meta_dtype not in (torch.int16, torch.int32):
- raise RuntimeError(f"Invalid datatype {meta_dtype} of meta matrix")
- quadbits_per_meta_elem = meta_dtype.itemsize * 8 // 4
- ksparse = 4 if sparse.dtype != torch.float else 2
- meta_nrows, meta_ncols = meta_reordered.shape
- if meta_nrows != m:
- raise RuntimeError(
- f"Number of rows of meta matrix {meta_nrows} must be equal to number of columns of spase matrix {m}" # noqa: E501
- )
- if meta_ncols * ksparse * quadbits_per_meta_elem != 2 * k:
- raise RuntimeError(
- f"Number of columns of sparse matrix {k} different from the {meta_ncols * ksparse * quadbits_per_meta_elem // 2}, " # noqa: E501
- "expected according to the number of columns of meta matrix")
- # Undo meta tensor elements reordering.
- meta_offsets = _calculate_meta_reordering_scatter_offsets(
- m, meta_ncols, meta_dtype, device)
- meta = torch.gather(meta_reordered.view(-1), 0,
- meta_offsets).view(m, meta_ncols)
- # Unpack sparse tensor back to original dense tensor, using
- # information provided by meta tensor. Note that torch.float
- # datatype is handled pretty much the same as
- # torch.half/torch.bfloat16, as metadata for a pair of torch.float
- # value is encoded as if underlying 8 bytes contain four
- # torch.half/torch.bfloat16 values, where either first two or last
- # two are zeros.
- meta_2 = torch.empty(
- (m, meta_ncols, 2 * quadbits_per_meta_elem),
- dtype=meta_dtype,
- device=device,
- )
- if quadbits_per_meta_elem == 4:
- meta_2[:, :, 0] = meta & 0b11
- meta_2[:, :, 1] = (meta >> 2) & 0b11
- meta_2[:, :, 2] = (meta >> 4) & 0b11
- meta_2[:, :, 3] = (meta >> 6) & 0b11
- meta_2[:, :, 4] = (meta >> 8) & 0b11
- meta_2[:, :, 5] = (meta >> 10) & 0b11
- meta_2[:, :, 6] = (meta >> 12) & 0b11
- meta_2[:, :, 7] = (meta >> 14) & 0b11
- elif quadbits_per_meta_elem == 8:
- meta_2[:, :, 0] = meta & 0b11
- meta_2[:, :, 1] = (meta >> 2) & 0b11
- meta_2[:, :, 2] = (meta >> 4) & 0b11
- meta_2[:, :, 3] = (meta >> 6) & 0b11
- meta_2[:, :, 4] = (meta >> 8) & 0b11
- meta_2[:, :, 5] = (meta >> 10) & 0b11
- meta_2[:, :, 6] = (meta >> 12) & 0b11
- meta_2[:, :, 7] = (meta >> 14) & 0b11
- meta_2[:, :, 8] = (meta >> 16) & 0b11
- meta_2[:, :, 9] = (meta >> 18) & 0b11
- meta_2[:, :, 10] = (meta >> 20) & 0b11
- meta_2[:, :, 11] = (meta >> 22) & 0b11
- meta_2[:, :, 12] = (meta >> 24) & 0b11
- meta_2[:, :, 13] = (meta >> 26) & 0b11
- meta_2[:, :, 14] = (meta >> 28) & 0b11
- meta_2[:, :, 15] = (meta >> 30) & 0b11
- dense_offsets = meta_2.view(-1) + (
- torch.arange(0, 2 * m * k // ksparse, device=device) * 4).view(
- -1, 1).repeat(1, 2).view(-1)
- dense = torch.zeros((m * 2 * k, ), dtype=sparse.dtype, device=device)
- if sparse.dtype != torch.float:
- # dense.scatter_(0, dense_offsets, sparse.view(-1))
- dense.scatter_(0, dense_offsets, sparse.reshape(-1))
- else:
- dense.view(torch.half).scatter_(0, dense_offsets,
- sparse.view(torch.half).view(-1))
- return dense.view(m, 2 * k)
- def mask_creator(tensor):
- """
- Class for creating N:M sparsity masks.
- Masks will be created using the N:M ratio, where for every block of
- M weights, N will be pruned based on ranked weight value. Each mask
- will correspond to the given tensor.
- :param N: The number of weights in a group to keep
- :param M: The size of a weight group
- """
- N = 2
- M = 4
- mask = None
- # for i, tensor in enumerate(tensors):
- if tensor.numel() % M != 0:
- raise ValueError(
- f"Tensor of size {tensor.shape} can't be evenly divided into "
- f"{M} groups")
- num_groups = tensor.numel() // M
- # N:M sparsity for linear layers
- tensor_temp = tensor.detach().abs().reshape(num_groups, M)
- index = torch.argsort(tensor_temp, dim=1)[:, :int(M - N)]
- w_b = torch.ones(tensor_temp.shape, device=tensor_temp.device)
- mask = w_b.scatter_(dim=1, index=index, value=0).reshape(tensor.shape)
- return mask
- def inject_24(w, size_k, size_n):
- assert w.shape == (size_k, size_n)
- mask = mask_creator(w.t()).t().cuda().bool()
- return (mask * w).contiguous(), mask.contiguous()
- def check_24(w, num_rows_to_sample=50, _verbose=False):
- BLOCK_SIZE = 4
- MAX_NON_ZEROS = 2
- w = w.t().contiguous()
- print("check_24: w.shape = {}".format(w.shape))
- num_rows, num_cols = w.shape
- sampled_row_idxs = random.choices(range(num_rows), k=num_rows_to_sample)
- if _verbose:
- print(f"Sampled row idxs = {sampled_row_idxs}")
- total_segments = 0
- non_24_segments = 0
- for i in sampled_row_idxs:
- for j in range(0, num_cols - BLOCK_SIZE, BLOCK_SIZE):
- total_segments += 1
- block = w[i, j:j + BLOCK_SIZE]
- num_nonzero = torch.count_nonzero(block)
- if num_nonzero > MAX_NON_ZEROS:
- print("i = {} j = {} block = {}".format(i, j, block))
- non_24_segments += 1
- print(f"{non_24_segments} / {total_segments} do not have 2:4 structure.")
- def compress_quantized_24_weight(q_24, size_k, size_n, num_bits):
- assert q_24.shape == (size_k, size_n)
- # Remove zp to normalize over 0
- max_q_val = (1 << num_bits) - 1
- zp = (max_q_val + 1) // 2
- q_24_no_zp = q_24 - zp
- # Compress
- q_24_no_zp = q_24_no_zp.t().contiguous()
- q_24_no_zp_comp, meta = sparse_semi_structured_from_dense_cutlass(
- q_24_no_zp)
- q_24_no_zp_comp = q_24_no_zp_comp.t().contiguous()
- # Restore zp
- q_24_comp = q_24_no_zp_comp + zp
- # Resize meta to its actual shape (without moving any data)
- meta = meta.resize_(meta.shape[1] // 2, meta.shape[0] * 2)
- return q_24_comp, meta
- def get_scale_perms_24():
- scale_perm: List[int] = []
- for i in range(8):
- scale_perm.extend([i * 8 + j for j in [0, 4, 1, 5, 2, 6, 3, 7]])
- scale_perm_single: List[int] = []
- for i in range(8):
- scale_perm_single.extend([8 * i + j for j in [0, 1, 2, 3, 4, 5, 6, 7]])
- return scale_perm, scale_perm_single
- def get_weight_perm_24(num_bits: int):
- perm_list: List[int] = []
- for i in range(32):
- perm1: List[int] = []
- col = i // 4
- col_o = col // 2
- for block in [0, 1]:
- for row in [
- 2 * (i % 4),
- 2 * (i % 4) + 1,
- 2 * (i % 4 + 4),
- 2 * (i % 4 + 4) + 1,
- ]:
- perm1.append(16 * row + col_o * 256 + 8 * (col % 2) +
- 4 * block)
- for j in range(4):
- perm_list.extend([p + 1 * j for p in perm1])
- perm = numpy.array(perm_list)
- if num_bits == 4:
- interleave = numpy.array([0, 2, 4, 6, 1, 3, 5, 7])
- elif num_bits == 8:
- interleave = numpy.array([0, 2, 1, 3])
- else:
- raise ValueError("num_bits must be 4 or 8, got {}".format(num_bits))
- perm = perm.reshape((-1, len(interleave)))[:, interleave].ravel()
- perm = torch.from_numpy(perm)
- return perm
- def marlin_permute_scales_24(s: torch.Tensor, size_k: int, size_n: int,
- group_size: int) -> torch.Tensor:
- scale_perm, scale_perm_single = get_scale_perms_24()
- if group_size < size_k and group_size != -1:
- s = s.reshape((-1, len(scale_perm)))[:, scale_perm]
- else:
- s = s.reshape((-1, len(scale_perm_single)))[:, scale_perm_single]
- s = s.reshape((-1, size_n)).contiguous()
- return s
- def marlin_24_quantize(
- w: torch.Tensor,
- num_bits: int,
- group_size: int,
- ):
- size_k, size_n = w.shape
- # Normalize group_size
- if group_size == -1:
- group_size = size_k
- assert group_size <= size_k
- # Inject 2:4 sparsity
- w_24, mask_24 = inject_24(w, size_k, size_n)
- # Quantize
- w_24_ref, q_w_24, s, g_idx, rand_perm = quantize_weights(w_24,
- num_bits,
- group_size,
- act_order=False)
- # Compress quantized weight
- q_w_24_comp, meta = compress_quantized_24_weight(q_w_24, size_k, size_n,
- num_bits)
- size_k_comp = size_k // 2
- # Reformat to marlin
- weight_perm = get_weight_perm_24(num_bits)
- marlin_24_q_w_comp = marlin_weights(q_w_24_comp, size_k_comp, size_n,
- num_bits, weight_perm)
- marlin_24_s = marlin_permute_scales_24(s, size_k, size_n, group_size)
- # Create result
- res_list = [w_24_ref, marlin_24_q_w_comp, meta, marlin_24_s]
- for i in range(len(res_list)):
- res_list[i] = res_list[i].to(w.device)
- return res_list
|