123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- """Test hashing of cache blocks.
- Run `pytest tests/test_cache_block_hashing.py`.
- """
- from typing import List, Optional
- import pytest
- from aphrodite.lora.request import LoRARequest
- from aphrodite.common.sequence import Sequence
- from aphrodite.transformers_utils.tokenizer_group import TokenizerGroup
- # Make two prefixes with different first blocks.
- prefix_start = [("You are an expert"), ("You are a")]
- prefix_common = (
- " school principal, skilled in effectively managing "
- "faculty and staff. Draft 10-15 questions for a potential first grade "
- "Head Teacher for my K-12, all-girls', independent school that emphasizes "
- "community, joyful discovery, and life-long learning. The candidate is "
- "coming in for a first-round panel interview for a 8th grade Math "
- "teaching role. They have 5 years of previous teaching experience "
- "as an assistant teacher at a co-ed, public school with experience "
- "in middle school math teaching. Based on this, fulfill "
- "the following: ")
- prefixes = [start + prefix_common for start in prefix_start]
- # Sample prompts.
- sample_prompts = [
- "Hello, my name is", "The president of the United States is",
- "The capital of France is", "The future of AI is"
- ]
- # Helper function.
- def flatten_2d(li):
- return [lss for ls in li for lss in ls]
- @pytest.mark.parametrize("model", ["facebook/opt-125m"])
- @pytest.mark.parametrize("block_size", [16])
- @pytest.mark.parametrize("max_num_seqs", [256])
- @pytest.mark.parametrize("concurrent_lora_int_ids",
- [[None], [1], [None, 1], [None, 1, 2], [1, 2]])
- def test_auto_prefix_caching(model: str, block_size: int, max_num_seqs: int,
- concurrent_lora_int_ids: List[Optional[int]]):
- tokenizer = TokenizerGroup(
- tokenizer_id="facebook/opt-125m",
- enable_lora=False,
- max_num_seqs=max_num_seqs,
- max_input_length=None,
- )
- hashes: List[List[List[int]]] = []
- for prefix in prefixes:
- for lora_int_id in concurrent_lora_int_ids:
- lora_request = None
- if lora_int_id is not None:
- lora_request = LoRARequest(
- f"example_lora_{lora_int_id}",
- lora_int_id,
- f"example/path/to/lora_{lora_int_id}",
- )
- hashes.append([])
- prompts = [prefix + prompt for prompt in sample_prompts]
- seq_id = 0
- for prompt in prompts:
- hashes[-1].append([])
- prompt_token_ids = tokenizer.encode(prompt)
- seq = Sequence(seq_id,
- inputs={
- "prompt": prompt,
- "prompt_token_ids": prompt_token_ids,
- },
- block_size=block_size,
- eos_token_id=tokenizer.tokenizer.eos_token_id,
- lora_request=lora_request)
- num_blocks = len(prompt_token_ids) // block_size
- for idx in range(num_blocks):
- hashes[-1][-1].append(seq.hash_of_block(idx))
- seq_id += 1
- # Check that hashes made with two prefixes with different first blocks are
- # different everywhere.
- for hash0, hash1 in zip(flatten_2d(hashes[0]), flatten_2d(hashes[1])):
- assert (hash0 != hash1)
- # Check that hashes of different prompts made with the same prefix are the
- # same until the hashes that contain the prompt.
- for hash_pref in hashes:
- same_hashes = [tuple(h[:-1]) for h in hash_pref]
- different_hashes = [h[-1] for h in hash_pref]
- assert (len(set(same_hashes)) == 1)
- assert (len(set(different_hashes)) == len(different_hashes))
|