123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- from typing import Any, Dict, List, Optional
- from contextlib import suppress
- import torch
- from torch.nn.parameter import Parameter
- from aphrodite.modeling.layers.linear import (LinearMethodBase,
- set_weight_attrs)
- from aphrodite.quantization.base_config import (QuantizationConfig)
- HAS_QUANTS = False
- with suppress(ImportError):
- from aphrodite._quant_C import quant_ops as ops
- HAS_QUANTS = True
- GGML_QUANT_SIZES = {
- 0: (1, 4), # F32
- 1: (1, 2), # F16
- 2: (32, 2 + 16), # Q4_0
- 3: (32, 2 + 2 + 16), # Q4_1
- 6: (32, 2 + 4 + 16), # Q5_0
- 7: (32, 2 + 2 + 4 + 16), # Q5_1
- 8: (32, 2 + 32), # Q8_0
- 9: (32, 4 + 4 + 32), # Q8_1
- 10: (256, 2 + 2 + 256 // 16 + 256 // 4), # Q2_K
- 11: (256, 2 + 256 // 4 + 256 // 8 + 12), # Q3_K
- 12: (256, 2 + 2 + 256 // 2 + 12), # Q4_K
- 13: (256, 2 + 2 + 256 // 2 + 256 // 8 + 12), # Q5_K
- 14: (256, 2 + 256 // 2 + 256 // 4 + 256 // 16), # Q6_K
- 15: (256, 4 + 256 + 256 // 8), # Q8_K
- 16: (256, 2 + 256 // 4), # IQ2_XXS
- 17: (256, 2 + 256 // 4 + 256 // 32), # IQ2_XS
- 18: (256, 2 + 3 * 256 // 8), # IQ3_XXS
- 19: (256, 2 + 256 // 8 + 256 // 16), # IQ1_S
- 20: (32, 2 + 32 // 2), # IQ4_NL
- 21: (256, 2 + 256 // 4 + 256 // 32 + 256 // 8 + 256 // 64), # IQ3_S
- 22: (256, 2 + 256 // 4 + 256 // 32 + 256 // 32), # IQ2_S
- 23: (256, 2 + 2 + 256 // 64 + 256 // 2), # IQ4_XS
- }
- class GGUFConfig(QuantizationConfig):
- """Config class for GGUF"""
- def __repr__(self) -> str:
- return ("GGUFConfig()")
- def get_name(self) -> str:
- return "gguf"
- def get_supported_act_dtypes(self) -> List[torch.dtype]:
- return [torch.half]
- def get_min_capability(self) -> int:
- return 61
- @staticmethod
- def get_config_filenames() -> List[str]:
- return []
- @classmethod
- def from_config(cls, config: Dict[str, Any]) -> "GGUFConfig":
- return cls()
- def get_linear_method(self) -> "GGUFLinearMethod":
- return GGUFLinearMethod(self)
- def get_scaled_act_names(self) -> List[str]:
- return []
- def merge_weight(self) -> bool:
- return False
- def rope_style(self) -> Optional[bool]:
- return False
- def quant_vocab(self) -> List[bool]:
- return [True, True]
- def support_fused_moe(self) -> bool:
- return False
- class GGUFLinearMethod(LinearMethodBase):
- """Linear method for GGUF.
- Args:
- quant_config: The GGUF quantization config.
- """
- def __init__(self, quant_config: GGUFConfig):
- if not HAS_QUANTS:
- raise ImportError("Could not find the quantization kernels.")
- self.quant_config = quant_config
- def create_weights(self, layer: torch.nn.Module,
- input_size_per_partition: int,
- output_partition_sizes: List[int], input_size: int,
- output_size: int, params_dtype: torch.dtype,
- **extra_weight_attrs):
- # The type of weight is unknown until load state dict
- weight = torch.nn.parameter.UninitializedParameter(requires_grad=False)
- # No need for pack_factor because we don't fuse qkv layers anyway.
- set_weight_attrs(weight, {
- "input_dim": 1,
- "output_dim": 0,
- })
- layer.register_parameter("weight", weight)
- weight_type = Parameter(
- torch.tensor((1), dtype=torch.int, device="cuda"),
- requires_grad=False,
- )
- set_weight_attrs(weight_type, {"ignore_warning": True})
- layer.register_parameter("weight_type", weight_type)
- def apply_weights(self,
- layer: torch.nn.Module,
- x: torch.Tensor,
- bias: Optional[torch.Tensor] = None) -> torch.Tensor:
- if isinstance(layer.weight_type, torch.Tensor):
- layer.weight_type = int(layer.weight_type)
- # Check tensor parallel shape here on first pass
- block_size = GGML_QUANT_SIZES[layer.weight_type][1]
- if layer.weight.shape[1] % block_size != 0:
- raise ValueError("Size is not aligned with the quantized "
- "weight shape.")
- weight = layer.weight
- weight_type = layer.weight_type
- infeatures = x.shape[-1]
- outfeatures = weight.shape[0]
- out_shape = x.shape[:-1] + (weight.shape[0], )
- reshaped_x = x.reshape(-1, x.shape[-1])
- xshape = x.view(-1, x.shape[-1])
- if xshape.shape[0] == 1:
- out = ops.ggml_mul_mat_vec_a8(weight, reshaped_x, weight_type,
- outfeatures)
- elif xshape.shape[0] < 8 and weight_type < 16:
- out = ops.ggml_mul_mat_a8(weight, reshaped_x, weight_type,
- outfeatures)
- else:
- weight = ops.ggml_dequantize(weight, weight_type, outfeatures,
- infeatures)
- out = reshaped_x @ weight.T
- if bias is not None:
- out = out + bias
- return out.reshape(out_shape)
- def apply_embedding(self, layer: torch.nn.Module,
- x: torch.Tensor) -> torch.Tensor:
- if isinstance(layer.weight_type, torch.Tensor):
- layer.weight_type = int(layer.weight_type)
- weight = layer.weight
- weight_type = layer.weight_type
- dim, block_size = GGML_QUANT_SIZES[weight_type]
- vocab_size = weight.shape[0]
- hidden_size = weight.shape[1] // block_size * dim
- if weight_type < 2:
- return torch.embedding(weight.view(vocab_size, -1), x)
- x_flat = x.flatten()
- quant = torch.index_select(weight.view(vocab_size, -1),
- dim=0,
- index=x_flat)
- dequant = ops.ggml_dequantize(quant, weight_type, hidden_size,
- x_flat.shape[0])
- return dequant.view(*x.shape, hidden_size)
- def apply_moe_weights(self, w1: Dict[str,
- torch.Tensor], w2: Dict[str,
- torch.Tensor],
- x: torch.Tensor, gating_output: torch.Tensor,
- topk: int, renormalize: bool) -> torch.Tensor:
- raise NotImplementedError
|