123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203 |
- """
- This example shows how to use Aphrodite for running offline inference
- with the correct prompt format on vision language models.
- For most models, the prompt format should follow corresponding examples
- on HuggingFace model repository.
- """
- import os
- from PIL import Image
- from transformers import AutoTokenizer
- from aphrodite import LLM, SamplingParams
- from aphrodite.common.utils import FlexibleArgumentParser
- # Input image and question
- image_path = os.path.join(os.path.dirname(os.path.realpath(__file__)),
- "burg.jpg")
- image = Image.open(image_path).convert("RGB")
- question = "What is the content of this image?"
- # LLaVA-1.5
- def run_llava(question):
- prompt = f"USER: <image>\n{question}\nASSISTANT:"
- llm = LLM(model="llava-hf/llava-1.5-7b-hf")
- return llm, prompt
- # LLaVA-1.6/LLaVA-NeXT
- def run_llava_next(question):
- prompt = f"[INST] <image>\n{question} [/INST]"
- llm = LLM(model="llava-hf/llava-v1.6-mistral-7b-hf")
- return llm, prompt
- # Fuyu
- def run_fuyu(question):
- prompt = f"{question}\n"
- llm = LLM(model="adept/fuyu-8b")
- return llm, prompt
- # Phi-3-Vision
- def run_phi3v(question):
- prompt = f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n" # noqa: E501
- # Note: The default setting of max_num_seqs (256) and
- # max_model_len (128k) for this model may cause OOM.
- # You may lower either to run this example on lower-end GPUs.
- # In this example, we override max_num_seqs to 5 while
- # keeping the original context length of 128k.
- llm = LLM(
- model="microsoft/Phi-3.5-vision-instruct",
- trust_remote_code=True,
- max_num_seqs=5,
- )
- return llm, prompt
- # PaliGemma
- def run_paligemma(question):
- prompt = "caption en"
- llm = LLM(model="google/paligemma2-3b-ft-docci-448")
- return llm, prompt
- # Chameleon
- def run_chameleon(question):
- prompt = f"{question}<image>"
- llm = LLM(model="facebook/chameleon-7b")
- return llm, prompt
- # MiniCPM-V
- def run_minicpmv(question):
- # 2.0
- # The official repo doesn't work yet, so we need to use a fork for now
- # model_name = "HwwwH/MiniCPM-V-2"
- # 2.5
- model_name = "openbmb/MiniCPM-Llama3-V-2_5"
- tokenizer = AutoTokenizer.from_pretrained(model_name,
- trust_remote_code=True)
- llm = LLM(
- model=model_name,
- trust_remote_code=True,
- )
- messages = [{
- 'role': 'user',
- 'content': f'(<image>./</image>)\n{question}'
- }]
- prompt = tokenizer.apply_chat_template(messages,
- tokenize=False,
- add_generation_prompt=True)
- return llm, prompt
- # BLIP-2
- def run_blip2(question):
- # BLIP-2 prompt format is inaccurate on HuggingFace model repository.
- # See https://huggingface.co/Salesforce/blip2-opt-2.7b/discussions/15#64ff02f3f8cf9e4f5b038262 #noqa
- prompt = f"Question: {question} Answer:"
- llm = LLM(model="Salesforce/blip2-opt-2.7b")
- return llm, prompt
- # InternVL
- def run_internvl(question):
- # Generally, InternVL can use chatml template for conversation
- TEMPLATE = "<|im_start|>User\n{prompt}<|im_end|>\n<|im_start|>Assistant\n"
- prompt = f"<image>\n{question}\n"
- prompt = TEMPLATE.format(prompt=prompt)
- llm = LLM(
- model="OpenGVLab/InternVL2-4B",
- trust_remote_code=True,
- max_num_seqs=28,
- tensor_parallel_size=2,
- max_model_len=8192,
- )
- return llm, prompt
- model_example_map = {
- "llava": run_llava,
- "llava-next": run_llava_next,
- "fuyu": run_fuyu,
- "phi3_v": run_phi3v,
- "paligemma": run_paligemma,
- "chameleon": run_chameleon,
- "minicpmv": run_minicpmv,
- "blip-2": run_blip2,
- "internvl_chat": run_internvl,
- }
- def main(args):
- model = args.model_type
- if model not in model_example_map:
- raise ValueError(f"Model type {model} is not supported.")
- llm, prompt = model_example_map[model](question)
- # We set temperature to 0.2 so that outputs can be different
- # even when all prompts are identical when running batch inference.
- sampling_params = SamplingParams(temperature=0.2, max_tokens=128)
- assert args.num_prompts > 0
- if args.num_prompts == 1:
- # Single inference
- inputs = {
- "prompt": prompt,
- "multi_modal_data": {
- "image": image
- },
- }
- else:
- # Batch inference
- inputs = [{
- "prompt": prompt,
- "multi_modal_data": {
- "image": image
- },
- } for _ in range(args.num_prompts)]
- outputs = llm.generate(inputs, sampling_params=sampling_params)
- for o in outputs:
- generated_text = o.outputs[0].text
- print(generated_text)
- if __name__ == "__main__":
- parser = FlexibleArgumentParser(
- description='Demo on using Aphrodite for offline inference with '
- 'vision language models')
- parser.add_argument('--model-type',
- '-m',
- type=str,
- default="llava",
- choices=model_example_map.keys(),
- help='Huggingface "model_type".')
- parser.add_argument('--num-prompts',
- type=int,
- default=1,
- help='Number of prompts to run.')
- args = parser.parse_args()
- main(args)
|