1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711 |
- import dataclasses
- import gc
- import inspect
- import itertools
- import time
- import warnings
- import weakref
- from dataclasses import dataclass
- from typing import (TYPE_CHECKING, Any, Callable, Dict, List, Optional, Set,
- Tuple, Type, TypeVar, Union)
- import numpy as np
- import torch
- import torch.distributed
- import torch.nn as nn
- from loguru import logger
- import aphrodite.common.envs as envs
- from aphrodite.attention import AttentionMetadata, get_attn_backend
- from aphrodite.attention.backends.abstract import AttentionState
- from aphrodite.attention.backends.utils import CommonAttentionState
- from aphrodite.common.config import (CacheConfig, DeviceConfig, LoadConfig,
- LoRAConfig, ModelConfig, ParallelConfig,
- PromptAdapterConfig, SchedulerConfig)
- from aphrodite.common.sampling_params import SamplingParams
- from aphrodite.common.sequence import (IntermediateTensors,
- SequenceGroupMetadata)
- from aphrodite.common.utils import (CudaMemoryProfiler, PyObjectCache,
- async_tensor_h2d, flatten_2d_lists, is_hip,
- is_pin_memory_available, supports_dynamo)
- from aphrodite.distributed import get_pp_group
- from aphrodite.distributed.parallel_state import (
- get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size,
- graph_capture)
- from aphrodite.inputs import INPUT_REGISTRY, InputRegistry
- from aphrodite.lora.layers import LoRAMapping
- from aphrodite.lora.request import LoRARequest
- from aphrodite.lora.worker_manager import LRUCacheWorkerLoRAManager
- from aphrodite.modeling.layers.sampler import SamplerOutput
- from aphrodite.modeling.model_loader import get_model
- from aphrodite.modeling.model_loader.tensorizer import TensorizerConfig
- from aphrodite.modeling.models.interfaces import (supports_lora,
- supports_multimodal)
- from aphrodite.modeling.models.utils import set_cpu_offload_max_bytes
- from aphrodite.modeling.sampling_metadata import (SamplingMetadata,
- SamplingMetadataCache)
- from aphrodite.multimodal import (MULTIMODAL_REGISTRY, BatchedTensorInputs,
- MultiModalInputs, MultiModalRegistry)
- from aphrodite.prompt_adapter.layers import PromptAdapterMapping
- from aphrodite.prompt_adapter.request import PromptAdapterRequest
- from aphrodite.prompt_adapter.worker_manager import (
- LRUCacheWorkerPromptAdapterManager)
- from aphrodite.task_handler.model_runner_base import (
- ModelRunnerBase, ModelRunnerInputBase, ModelRunnerInputBuilderBase,
- _add_attn_metadata_broadcastable_dict,
- _add_sampling_metadata_broadcastable_dict,
- _init_attn_metadata_from_tensor_dict,
- _init_sampling_metadata_from_tensor_dict)
- if TYPE_CHECKING:
- from aphrodite.attention.backends.abstract import AttentionBackend
- LORA_WARMUP_RANK = 8
- _BATCH_SIZE_ALIGNMENT = 8
- # all the token sizes that **can** be captured by cudagraph.
- # they can be arbitrarily large.
- # currently it includes: 1, 2, 4, 8, 16, 24, 32, 40, ..., 8192.
- # the actual sizes to capture will be determined by the model,
- # depending on the model's max_num_seqs.
- # NOTE: _get_graph_batch_size needs to be updated if this list is changed.
- _BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [
- _BATCH_SIZE_ALIGNMENT * i for i in range(1, 1025)
- ]
- _NUM_WARMUP_ITERS = 2
- TModelInputForGPU = TypeVar('TModelInputForGPU', bound="ModelInputForGPU")
- @dataclass(frozen=True)
- class ModelInputForGPU(ModelRunnerInputBase):
- """
- This base class contains metadata needed for the base model forward pass
- but not metadata for possible additional steps, e.g., sampling. Model
- runners that run additional steps should subclass this method to add
- additional fields.
- """
- input_tokens: Optional[torch.Tensor] = None
- input_positions: Optional[torch.Tensor] = None
- seq_lens: Optional[List[int]] = None
- query_lens: Optional[List[int]] = None
- lora_mapping: Optional["LoRAMapping"] = None
- lora_requests: Optional[Set[LoRARequest]] = None
- attn_metadata: Optional["AttentionMetadata"] = None
- prompt_adapter_mapping: Optional[PromptAdapterMapping] = None
- prompt_adapter_requests: Optional[Set[PromptAdapterRequest]] = None
- multi_modal_kwargs: Optional[BatchedTensorInputs] = None
- request_ids_to_seq_ids: Optional[Dict[str, List[int]]] = None
- finished_requests_ids: Optional[List[str]] = None
- virtual_engine: int = 0
- async_callback: Optional[Callable] = None
- use_async_and_multi_step: bool = False
- def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
- tensor_dict = {
- "input_tokens": self.input_tokens,
- "input_positions": self.input_positions,
- "lora_requests": self.lora_requests,
- "lora_mapping": self.lora_mapping,
- "multi_modal_kwargs": self.multi_modal_kwargs,
- "prompt_adapter_mapping": self.prompt_adapter_mapping,
- "prompt_adapter_requests": self.prompt_adapter_requests,
- "virtual_engine": self.virtual_engine,
- "request_ids_to_seq_ids": self.request_ids_to_seq_ids,
- "finished_requests_ids": self.finished_requests_ids,
- }
- _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
- return tensor_dict
- @classmethod
- def from_broadcasted_tensor_dict(
- cls: Type[TModelInputForGPU],
- tensor_dict: Dict[str, Any],
- attn_backend: Optional["AttentionBackend"] = None,
- ) -> TModelInputForGPU:
- if attn_backend is not None:
- tensor_dict = _init_attn_metadata_from_tensor_dict(
- attn_backend, tensor_dict)
- return cls(**tensor_dict)
- @dataclass(frozen=True)
- class ModelInputForGPUWithSamplingMetadata(ModelInputForGPU):
- """
- Used by the ModelRunner.
- """
- sampling_metadata: Optional["SamplingMetadata"] = None
- # Used for speculative decoding. We do not broadcast it because it is only
- # used by the driver worker.
- is_prompt: Optional[bool] = None
- def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
- tensor_dict = {
- "input_tokens": self.input_tokens,
- "input_positions": self.input_positions,
- "lora_requests": self.lora_requests,
- "lora_mapping": self.lora_mapping,
- "multi_modal_kwargs": self.multi_modal_kwargs,
- "prompt_adapter_mapping": self.prompt_adapter_mapping,
- "prompt_adapter_requests": self.prompt_adapter_requests,
- "virtual_engine": self.virtual_engine,
- "request_ids_to_seq_ids": self.request_ids_to_seq_ids,
- "finished_requests_ids": self.finished_requests_ids,
- }
- _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
- _add_sampling_metadata_broadcastable_dict(tensor_dict,
- self.sampling_metadata)
- return tensor_dict
- @classmethod
- def from_broadcasted_tensor_dict(
- cls,
- tensor_dict: Dict[str, Any],
- attn_backend: Optional["AttentionBackend"] = None,
- ) -> "ModelInputForGPUWithSamplingMetadata":
- tensor_dict = _init_sampling_metadata_from_tensor_dict(tensor_dict)
- if attn_backend is not None:
- tensor_dict = _init_attn_metadata_from_tensor_dict(
- attn_backend, tensor_dict)
- return cls(**tensor_dict)
- class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
- """Build ModelInputForGPU from SequenceGroupMetadata."""
- # NOTE: ideally, we dould be using a dataclass(kw_only=True)
- # here, so that this can be subclassed easily, but kw_only
- # is not supported in python<3.10.
- class InterDataForSeqGroup:
- """Intermediate data for the current sequence group."""
- def simple_reinit(self):
- self.input_tokens[0].clear() # type: ignore
- self.input_positions[0].clear() # type: ignore
- self.seq_lens[0] = 0 # type: ignore
- self.orig_seq_lens[0] = 0 # type: ignore
- self.query_lens[0] = 0 # type: ignore
- self.context_lens[0] = 0 # type: ignore
- self.curr_sliding_window_blocks[0] = 0 # type: ignore
- self.lora_index_mapping.clear() # type: ignore
- self.lora_prompt_mapping.clear() # type: ignore
- self.lora_requests.clear() # type: ignore
- self.prompt_adapter_index_mapping.clear() # type: ignore
- self.prompt_adapter_prompt_mapping.clear() # type: ignore
- def __init__(
- self,
- *,
- # From sequence group metadata.
- request_id: str,
- seq_ids: List[int],
- is_prompt: bool,
- block_tables: Optional[Dict[int, List[int]]],
- computed_block_nums: List[int],
- n_seqs: int = 0,
- # Input tokens and positions.
- input_tokens: Optional[List[List[int]]] = None,
- input_positions: Optional[List[List[int]]] = None,
- # The sequence length (may be capped to the sliding window).
- seq_lens: Optional[List[int]] = None,
- # The original sequence length (before applying sliding window).
- # This is used to compute slot mapping.
- orig_seq_lens: Optional[List[int]] = None,
- # The query length.
- query_lens: Optional[List[int]] = None,
- # The number of tokens that are already computed.
- context_lens: Optional[List[int]] = None,
- # The current sliding window block.
- curr_sliding_window_blocks: Optional[List[int]] = None,
- # LoRA inputs.
- lora_index_mapping: Optional[List[List[int]]] = None,
- lora_prompt_mapping: Optional[List[List[int]]] = None,
- lora_requests: Optional[Set[LoRARequest]] = None,
- # Prompt adapter inputs.
- prompt_adapter_index_mapping: Optional[List[int]] = None,
- prompt_adapter_prompt_mapping: Optional[List[int]] = None,
- prompt_adapter_request: Optional[PromptAdapterRequest] = None,
- # Multi-modal inputs.
- multi_modal_inputs: Optional[MultiModalInputs] = None,
- # Whether the prefix cache is hit (prefill only).
- prefix_cache_hit: bool = False,
- reinit: bool = False,
- reinit_use_defaults: bool = False,
- ):
- if reinit:
- assert len(self.seq_ids) == len(seq_ids) # type: ignore
- for i, seq_id in enumerate(seq_ids):
- self.seq_ids[i] = seq_id # type: ignore
- else:
- self.seq_ids = seq_ids
- self.request_id = request_id
- self.is_prompt = is_prompt
- self.block_tables = block_tables
- self.computed_block_nums = computed_block_nums
- self.n_seqs = n_seqs
- if reinit:
- if len(self.seq_ids) == 1 and reinit_use_defaults:
- self.simple_reinit()
- else:
- if input_tokens:
- self.input_tokens = input_tokens
- else:
- for seq_id in range(len(self.seq_ids)):
- self.input_tokens[seq_id].clear()
- if input_positions:
- self.input_positions = input_positions
- else:
- for seq_id in range(len(self.seq_ids)):
- self.input_positions[seq_id].clear()
- if seq_lens:
- self.seq_lens = seq_lens
- else:
- for seq_id in range(len(self.seq_ids)):
- self.seq_lens[seq_id] = 0
- if orig_seq_lens:
- self.orig_seq_lens = orig_seq_lens
- else:
- for seq_id in range(len(self.seq_ids)):
- self.orig_seq_lens[seq_id] = 0
- if query_lens:
- self.query_lens = query_lens
- else:
- for seq_id in range(len(self.seq_ids)):
- self.query_lens[seq_id] = 0
- if context_lens:
- self.context_lens = context_lens
- else:
- for seq_id in range(len(self.seq_ids)):
- self.context_lens[seq_id] = 0
- if curr_sliding_window_blocks:
- self.curr_sliding_window_blocks = \
- curr_sliding_window_blocks
- else:
- for seq_id in range(len(self.seq_ids)):
- self.curr_sliding_window_blocks[seq_id] = 0
- if lora_index_mapping:
- self.lora_index_mapping = lora_index_mapping
- else:
- self.lora_index_mapping.clear()
- if lora_prompt_mapping:
- self.lora_prompt_mapping = lora_prompt_mapping
- else:
- self.lora_prompt_mapping.clear()
- if lora_requests:
- self.lora_requests = lora_requests
- else:
- self.lora_requests.clear()
- if prompt_adapter_index_mapping:
- self.prompt_adapter_index_mapping = \
- prompt_adapter_index_mapping
- else:
- self.prompt_adapter_index_mapping.clear()
- if prompt_adapter_prompt_mapping:
- self.prompt_adapter_prompt_mapping = \
- prompt_adapter_prompt_mapping
- else:
- self.prompt_adapter_prompt_mapping.clear()
- else:
- self.input_tokens = input_tokens or []
- self.input_positions = input_positions or []
- self.seq_lens = seq_lens or []
- self.orig_seq_lens = orig_seq_lens or []
- self.query_lens = query_lens or []
- self.context_lens = context_lens or []
- self.curr_sliding_window_blocks = \
- curr_sliding_window_blocks or []
- self.lora_index_mapping = lora_index_mapping or []
- self.lora_prompt_mapping = lora_prompt_mapping or []
- self.lora_requests = lora_requests or set()
- self.prompt_adapter_index_mapping = (
- prompt_adapter_index_mapping or [])
- self.prompt_adapter_prompt_mapping = (
- prompt_adapter_prompt_mapping or [])
- self.prompt_adapter_request = prompt_adapter_request
- self.multi_modal_inputs = multi_modal_inputs
- self.prefix_cache_hit = prefix_cache_hit
- self.n_seqs = len(self.seq_ids)
- if not reinit:
- self.__post_init__()
- def __post_init__(self):
- self.n_seqs = len(self.seq_ids)
- self.input_tokens = [[] for _ in range(self.n_seqs)]
- self.input_positions = [[] for _ in range(self.n_seqs)]
- self.seq_lens = [0] * self.n_seqs
- self.orig_seq_lens = [0] * self.n_seqs
- self.query_lens = [0] * self.n_seqs
- self.context_lens = [0] * self.n_seqs
- self.curr_sliding_window_blocks = [0] * self.n_seqs
- self.lora_index_mapping = []
- self.lora_prompt_mapping = []
- def gen_inter_data_builder(self, num_seqs: int):
- return lambda: ModelInputForGPUBuilder.InterDataForSeqGroup(
- request_id="",
- seq_ids=[0] * num_seqs,
- is_prompt=True,
- block_tables=None,
- computed_block_nums=[])
- def init_cached_inter_data(self, *args, **kwargs):
- assert len(args) == 0
- assert "seq_ids" in kwargs
- seq_ids = kwargs["seq_ids"]
- num_seqs = len(seq_ids)
- # The inter-data cache is per model_runner
- inter_data_cache = self.runner.inter_data_cache
- if num_seqs not in inter_data_cache:
- inter_data_cache[num_seqs] = PyObjectCache(
- self.gen_inter_data_builder(num_seqs))
- obj = inter_data_cache[num_seqs].get_object()
- obj.__init__(*args, **kwargs)
- return obj
- def reset_cached_inter_data(self):
- for cache in self.runner.inter_data_cache.values():
- cache.reset()
- def __init__(self,
- runner: "GPUModelRunnerBase",
- finished_requests_ids: Optional[List[str]] = None):
- super().__init__()
- # Compute functions for each sequence in a sequence group.
- # WARNING: The order of the functions matters!
- self.per_seq_compute_fns = [
- self._compute_lens,
- self._compute_for_prefix_cache_hit,
- self._compute_for_sliding_window,
- self._compute_lora_input,
- ]
- # Compute functions for each sequence group.
- # WARNING: The order of the functions matters!
- self.per_seq_group_compute_fns = [
- self._compute_prompt_adapter_input,
- self._compute_multi_modal_input,
- ]
- self.runner = runner
- self.model_input_cls = self.runner._model_input_cls
- self.attn_backend = self.runner.attn_backend
- self.scheduler_config = self.runner.scheduler_config
- self.sliding_window = self.runner.sliding_window
- self.block_size = self.runner.block_size
- self.enable_lora = self.runner.lora_config is not None
- self.enable_prompt_adapter = (self.runner.prompt_adapter_config
- is not None)
- self.multi_modal_input_mapper = self.runner.multi_modal_input_mapper
- self.finished_requests_ids = finished_requests_ids
- self.decode_only = True
- # Intermediate data (data in CPU before going to GPU) for
- # the current sequence group.
- self.inter_data_list: List[
- ModelInputForGPUBuilder.InterDataForSeqGroup] = []
- # Attention metadata inputs.
- self.attn_metadata_builder = self.attn_backend.make_metadata_builder(
- weakref.proxy(self))
- # Engine/Model configurations.
- self.chunked_prefill_enabled = (
- self.scheduler_config is not None
- and self.scheduler_config.chunked_prefill_enabled)
- if self.sliding_window is not None:
- self.sliding_window_blocks = (
- self.sliding_window + self.block_size - 1) // self.block_size
- self.block_aligned_sliding_window = \
- self.sliding_window_blocks * self.block_size
- def _compute_lens(self, inter_data: InterDataForSeqGroup, seq_idx: int,
- seq_group_metadata: SequenceGroupMetadata):
- """Compute context length, sequence length and tokens
- for the given sequence data.
- """
- seq_data = seq_group_metadata.seq_data[inter_data.seq_ids[seq_idx]]
- token_chunk_size = seq_group_metadata.token_chunk_size
- # Compute context length (the number of tokens that are
- # already computed) and sequence length (total number of tokens).
- seq_len = seq_data.get_len()
- if inter_data.is_prompt:
- context_len = seq_data.get_num_computed_tokens()
- else:
- # get_num_computed_tokens is incorrect for spec decoding.
- # So, we should have a special logic here.
- # TODO: Fix it.
- context_len = seq_len - 1
- seq_len = min(seq_len, context_len + token_chunk_size)
- # Compute tokens.
- if inter_data.is_prompt:
- tokens = seq_data.get_token_ids()
- if context_len != 0 or seq_len < len(tokens):
- tokens = tokens[context_len:seq_len]
- else:
- # Optimization. get_token_ids requires the entire copy of
- # tokens.
- tokens = seq_data.get_last_token_id()
- inter_data.seq_lens[seq_idx] = seq_len
- inter_data.orig_seq_lens[seq_idx] = seq_len
- inter_data.context_lens[seq_idx] = context_len
- if isinstance(tokens, list):
- inter_data.input_tokens[seq_idx].extend(tokens)
- else:
- inter_data.input_tokens[seq_idx].append(tokens)
- if (seq_len - context_len) == 1:
- inter_data.input_positions[seq_idx].append(seq_len - 1)
- else:
- inter_data.input_positions[seq_idx].extend(
- range(context_len, seq_len))
- inter_data.query_lens[
- seq_idx] = seq_len - context_len if inter_data.is_prompt else 1
- def _compute_for_prefix_cache_hit(
- self, inter_data: InterDataForSeqGroup, seq_idx: int,
- seq_group_metadata: SequenceGroupMetadata):
- """Check if hit prefix cache (i.e., some blocks are already computed).
- If hit, update input tokens and positions to only compute the
- remaining blocks.
- """
- computed_block_nums = inter_data.computed_block_nums
- # Note that prefix caching does not support sliding window.
- prefix_cache_hit = (computed_block_nums is not None
- and len(computed_block_nums) > 0
- and self.sliding_window is None
- and inter_data.is_prompt)
- inter_data.prefix_cache_hit = prefix_cache_hit
- if not prefix_cache_hit:
- return
- assert computed_block_nums is not None
- # The cache hit prompt tokens in this sequence. Note that
- # this may be larger than the sequence length if chunked
- # prefill is enabled.
- prefix_cache_len = len(computed_block_nums) * self.block_size
- # The number of so far computed prompt tokens in this sequence.
- context_len = inter_data.context_lens[seq_idx]
- # The total number of prompt tokens in this sequence.
- # When chunked prefill is enabled, this is the token number of
- # computed chunks + current chunk.
- seq_len = inter_data.seq_lens[seq_idx]
- if prefix_cache_len <= context_len:
- # We already passed the cache hit region,
- # so do normal computation.
- pass
- elif context_len < prefix_cache_len < seq_len:
- # Partial hit. Compute the missing part.
- uncomputed_start = prefix_cache_len - context_len
- inter_data.input_tokens[seq_idx] = inter_data.input_tokens[
- seq_idx][uncomputed_start:]
- inter_data.input_positions[seq_idx] = inter_data.input_positions[
- seq_idx][uncomputed_start:]
- context_len = prefix_cache_len
- inter_data.context_lens[seq_idx] = context_len
- inter_data.query_lens[
- seq_idx] = inter_data.seq_lens[seq_idx] - context_len
- elif seq_len <= prefix_cache_len:
- # Full hit. Only compute the last token to avoid
- # erroneous behavior. FIXME: Ideally we should directly
- # mark all tokens as computed in the scheduler and do not
- # schedule this sequence, so this case should not happen.
- inter_data.input_tokens[seq_idx] = inter_data.input_tokens[
- seq_idx][-1:]
- inter_data.input_positions[seq_idx] = inter_data.input_positions[
- seq_idx][-1:]
- inter_data.query_lens[seq_idx] = 1
- inter_data.context_lens[seq_idx] = inter_data.seq_lens[seq_idx] - 1
- def _compute_for_sliding_window(self, inter_data: InterDataForSeqGroup,
- seq_idx: int,
- seq_group_metadata: SequenceGroupMetadata):
- """Update seq_len and curr_sliding_window_block for the given
- sequence data (only required by decoding) if sliding window is enabled.
- """
- curr_sliding_window_block = 0
- sliding_seq_len = inter_data.seq_lens[seq_idx]
- if not inter_data.is_prompt and self.sliding_window is not None:
- # TODO: This is a hack to make sliding window work with
- # paged attn. We can remove it if we make paged attn kernel
- # to properly handle slinding window attn.
- curr_sliding_window_block = self.sliding_window_blocks
- if self.scheduler_config.use_v2_block_manager:
- # number of elements in last block
- suff_len = inter_data.seq_lens[seq_idx] % self.block_size
- sliding_seq_len = min(
- inter_data.seq_lens[seq_idx],
- self.block_aligned_sliding_window + suff_len)
- if suff_len > 0:
- curr_sliding_window_block += 1
- else:
- sliding_seq_len = min(inter_data.seq_lens[seq_idx],
- self.sliding_window)
- inter_data.curr_sliding_window_blocks[
- seq_idx] = curr_sliding_window_block
- inter_data.seq_lens[seq_idx] = sliding_seq_len
- def _compute_lora_input(self, inter_data: InterDataForSeqGroup,
- seq_idx: int,
- seq_group_metadata: SequenceGroupMetadata):
- """If LoRA is enabled, compute LoRA index and prompt mapping."""
- if not self.enable_lora:
- return
- lora_id = seq_group_metadata.lora_int_id
- if lora_id > 0:
- inter_data.lora_requests.add(seq_group_metadata.lora_request)
- query_len = inter_data.query_lens[seq_idx]
- inter_data.lora_index_mapping.append([lora_id] * query_len)
- sampling_params = seq_group_metadata.sampling_params
- if sampling_params and sampling_params.prompt_logprobs is not None:
- inter_data.lora_prompt_mapping.append([lora_id] * query_len)
- elif not self.chunked_prefill_enabled or seq_group_metadata.do_sample:
- inter_data.lora_prompt_mapping.append([lora_id])
- else:
- inter_data.lora_prompt_mapping.append([])
- def _compute_prompt_adapter_input(
- self, inter_data: InterDataForSeqGroup,
- seq_group_metadata: SequenceGroupMetadata):
- """If prompt adapter is enabled, compute index and prompt mapping.
- """
- # Note that when is_prompt=True, we expect only one sequence
- # in the group.
- if not self.enable_prompt_adapter:
- return
- prompt_adapter_id = seq_group_metadata.prompt_adapter_id
- if prompt_adapter_id <= 0 or not inter_data.is_prompt:
- return
- # We expect only one sequence in the group when is_prompt=True.
- assert inter_data.n_seqs == 1
- query_len = inter_data.query_lens[0]
- inter_data.prompt_adapter_request = (
- seq_group_metadata.prompt_adapter_request)
- num_tokens = seq_group_metadata.prompt_adapter_num_virtual_tokens
- inter_data.prompt_adapter_index_mapping = [
- prompt_adapter_id
- ] * num_tokens + [0] * (query_len - num_tokens)
- inter_data.prompt_adapter_prompt_mapping = [prompt_adapter_id] * (
- query_len if seq_group_metadata.sampling_params
- and seq_group_metadata.sampling_params.prompt_logprobs else 1)
- def _compute_multi_modal_input(self, inter_data: InterDataForSeqGroup,
- seq_group_metadata: SequenceGroupMetadata):
- """If multi-modal data is given, add it to the input."""
- mm_data = seq_group_metadata.multi_modal_data
- if not mm_data:
- return
- mm_kwargs = self.multi_modal_input_mapper(mm_data)
- inter_data.multi_modal_inputs = mm_kwargs
- def add_seq_group(self, seq_group_metadata: SequenceGroupMetadata):
- """Add a sequence group to the builder."""
- seq_ids = seq_group_metadata.seq_data.keys()
- n_seqs = len(seq_ids)
- is_prompt = seq_group_metadata.is_prompt
- if is_prompt:
- assert n_seqs == 1
- self.decode_only = False
- inter_data = self.init_cached_inter_data(
- request_id=seq_group_metadata.request_id,
- seq_ids=seq_ids,
- is_prompt=is_prompt,
- block_tables=seq_group_metadata.block_tables,
- computed_block_nums=seq_group_metadata.computed_block_nums,
- reinit=True,
- reinit_use_defaults=True)
- self.inter_data_list.append(inter_data)
- for seq_idx in range(n_seqs):
- for per_seq_fn in self.per_seq_compute_fns:
- per_seq_fn(inter_data, seq_idx, seq_group_metadata)
- for per_seq_group_fn in self.per_seq_group_compute_fns:
- per_seq_group_fn(inter_data, seq_group_metadata)
- def _use_captured_graph(self, batch_size: int,
- max_decode_seq_len: int) -> bool:
- return (self.decode_only and not self.runner.model_config.enforce_eager
- and batch_size <= self.runner.max_batchsize_to_capture
- and max_decode_seq_len <= self.runner.max_seq_len_to_capture)
- def build(self) -> ModelInputForGPU:
- """Finalize the builder intermediate data and
- create on-device tensors.
- """
- # Combine and flatten intermediate data.
- input_tokens = []
- for inter_data in self.inter_data_list:
- for cur_input_tokens in inter_data.input_tokens:
- input_tokens.extend(cur_input_tokens)
- if not input_tokens:
- # This may happen when all prefill requests hit
- # prefix caching and there is no decode request.
- return self.model_input_cls()
- input_positions = []
- for inter_data in self.inter_data_list:
- for cur_input_positions in inter_data.input_positions:
- input_positions.extend(cur_input_positions)
- seq_lens = []
- max_decode_seq_len = 0
- for inter_data in self.inter_data_list:
- seq_lens.extend(inter_data.seq_lens)
- if not inter_data.is_prompt:
- max_decode_seq_len = max(max_decode_seq_len,
- max(inter_data.seq_lens))
- query_lens = []
- for inter_data in self.inter_data_list:
- query_lens.extend(inter_data.query_lens)
- # Mapping from request IDs to sequence IDs. Used for Jamba models
- # that manages the cache by itself.
- request_ids_to_seq_ids = {
- data.request_id: data.seq_ids
- for data in self.inter_data_list
- }
- batch_size = len(input_tokens)
- use_captured_graph = self._use_captured_graph(batch_size,
- max_decode_seq_len)
- # If cuda graph can be used, pad tensors accordingly.
- # See `capture_model` API for more details.
- # Aphrodite uses cuda graph only for decoding requests.
- cuda_graph_pad_size = -1
- if use_captured_graph:
- graph_batch_size = _get_graph_batch_size(batch_size)
- assert graph_batch_size >= batch_size
- cuda_graph_pad_size = graph_batch_size - batch_size
- batch_size = graph_batch_size
- # Tokens and positions.
- if cuda_graph_pad_size:
- input_tokens.extend(itertools.repeat(0, cuda_graph_pad_size))
- input_positions.extend(itertools.repeat(0, cuda_graph_pad_size))
- assert self.runner.device is not None
- input_tokens_tensor = async_tensor_h2d(input_tokens, torch.long,
- self.runner.device,
- self.runner.pin_memory)
- input_positions_tensor = async_tensor_h2d(input_positions, torch.long,
- self.runner.device,
- self.runner.pin_memory)
- # Sequence and query lengths.
- if cuda_graph_pad_size:
- seq_lens.extend(itertools.repeat(1, cuda_graph_pad_size))
- # Attention metadata.
- attn_metadata = self.attn_metadata_builder.build(
- seq_lens, query_lens, cuda_graph_pad_size, batch_size)
- # LoRA data.
- lora_requests = set()
- lora_mapping = None
- if self.enable_lora:
- lora_requests = set(r for data in self.inter_data_list
- for r in data.lora_requests)
- lora_index_mapping = flatten_2d_lists([
- flatten_2d_lists(inter_data.lora_index_mapping)
- for inter_data in self.inter_data_list
- ])
- if cuda_graph_pad_size:
- lora_index_mapping.extend(
- itertools.repeat(0, cuda_graph_pad_size))
- lora_prompt_mapping = flatten_2d_lists([
- flatten_2d_lists(inter_data.lora_prompt_mapping)
- for inter_data in self.inter_data_list
- ])
- lora_mapping = LoRAMapping(
- **dict(index_mapping=lora_index_mapping,
- prompt_mapping=lora_prompt_mapping,
- is_prefill=not self.decode_only))
- # Prompt adapter data.
- prompt_adapter_requests: Set[PromptAdapterRequest] = set()
- prompt_adapter_mapping = None
- if self.enable_prompt_adapter:
- prompt_adapter_requests = set(
- data.prompt_adapter_request for data in self.inter_data_list
- if data.prompt_adapter_request is not None)
- prompt_adapter_index_mapping = flatten_2d_lists([
- inter_data.prompt_adapter_index_mapping
- for inter_data in self.inter_data_list
- ])
- if cuda_graph_pad_size:
- prompt_adapter_index_mapping.extend(
- itertools.repeat(0, cuda_graph_pad_size))
- prompt_adapter_prompt_mapping = flatten_2d_lists([
- inter_data.prompt_adapter_prompt_mapping
- for inter_data in self.inter_data_list
- ])
- prompt_adapter_mapping = PromptAdapterMapping(
- prompt_adapter_index_mapping,
- prompt_adapter_prompt_mapping,
- )
- # Multi-modal data.
- multi_modal_inputs_list = [
- data.multi_modal_inputs for data in self.inter_data_list
- if data.multi_modal_inputs is not None
- ]
- multi_modal_kwargs = MultiModalInputs.batch(multi_modal_inputs_list)
- return self.model_input_cls(
- input_tokens=input_tokens_tensor,
- input_positions=input_positions_tensor,
- attn_metadata=attn_metadata,
- seq_lens=seq_lens,
- query_lens=query_lens,
- lora_mapping=lora_mapping,
- lora_requests=lora_requests,
- multi_modal_kwargs=multi_modal_kwargs,
- request_ids_to_seq_ids=request_ids_to_seq_ids,
- finished_requests_ids=self.finished_requests_ids,
- prompt_adapter_mapping=prompt_adapter_mapping,
- prompt_adapter_requests=prompt_adapter_requests)
- class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
- """
- Helper class for shared methods between GPU model runners.
- """
- _model_input_cls: Type[TModelInputForGPU]
- _builder_cls: Type[ModelInputForGPUBuilder]
- def __init__(
- self,
- model_config: ModelConfig,
- parallel_config: ParallelConfig,
- scheduler_config: SchedulerConfig,
- device_config: DeviceConfig,
- cache_config: CacheConfig,
- load_config: LoadConfig,
- lora_config: Optional[LoRAConfig],
- kv_cache_dtype: Optional[str] = "auto",
- is_driver_worker: bool = False,
- prompt_adapter_config: Optional[PromptAdapterConfig] = None,
- return_hidden_states: bool = False,
- input_registry: InputRegistry = INPUT_REGISTRY,
- mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
- tp_rank: int = 0,
- ):
- self.model_config = model_config
- self.parallel_config = parallel_config
- self.scheduler_config = scheduler_config
- self.device_config = device_config
- self.cache_config = cache_config
- self.lora_config = lora_config
- self.load_config = load_config
- self.is_driver_worker = is_driver_worker
- self.prompt_adapter_config = prompt_adapter_config
- self.return_hidden_states = return_hidden_states
- self.device = self.device_config.device
- self.pin_memory = is_pin_memory_available()
- self.tp_rank = tp_rank
- self.kv_cache_dtype = kv_cache_dtype
- self.sliding_window = model_config.get_sliding_window()
- self.block_size = cache_config.block_size
- self.max_seq_len_to_capture = self.model_config.max_seq_len_to_capture
- self.max_batchsize_to_capture = _get_max_graph_batch_size(
- self.scheduler_config.max_num_seqs)
- self.graph_runners: List[Dict[int, CUDAGraphRunner]] = [
- {} for _ in range(self.parallel_config.pipeline_parallel_size)
- ]
- self.graph_memory_pool: Optional[Tuple[
- int, int]] = None # Set during graph capture.
- self.has_seqlen_agnostic = model_config.contains_seqlen_agnostic_layers(
- parallel_config)
- # When using CUDA graph, the input block tables must be padded to
- # max_seq_len_to_capture. However, creating the block table in
- # Python can be expensive. To optimize this, we cache the block table
- # in numpy and only copy the actual input content at every iteration.
- # The shape of the cached block table will be
- # (max batch size to capture, max context len to capture / block size).
- self.graph_block_tables = np.zeros(
- (self.max_batchsize_to_capture, self.get_max_block_per_batch()),
- dtype=np.int32)
- self.attn_backend = get_attn_backend(
- self.model_config.get_head_size(),
- self.model_config.get_sliding_window(),
- self.model_config.dtype,
- self.kv_cache_dtype,
- self.block_size,
- self.model_config.is_attention_free(),
- )
- if self.attn_backend:
- self.attn_state = self.attn_backend.get_state_cls()(
- weakref.proxy(self))
- else:
- self.attn_state = CommonAttentionState(weakref.proxy(self))
- # Multi-modal data support
- self.input_registry = input_registry
- self.mm_registry = mm_registry
- self.multi_modal_input_mapper = mm_registry \
- .create_input_mapper(model_config)
- self.mm_registry.init_mm_limits_per_prompt(self.model_config)
- # Lazy initialization
- self.model: nn.Module # Set after load_model
- # Set after load_model.
- self.lora_manager: Optional[LRUCacheWorkerLoRAManager] = None
- self.prompt_adapter_manager: LRUCacheWorkerPromptAdapterManager = None
- set_cpu_offload_max_bytes(
- int(self.cache_config.cpu_offload_gb * 1024**3))
- # Used to cache python objects
- self.inter_data_cache: Dict[int, PyObjectCache] = {}
- self.sampling_metadata_cache: SamplingMetadataCache = \
- SamplingMetadataCache()
- def load_model(self) -> None:
- tp = get_tensor_model_parallel_world_size()
- rank = get_tensor_model_parallel_rank()
- if rank == 0:
- logger.info(f"Loading model {self.model_config.model}...")
- with CudaMemoryProfiler() as m:
- # measure the time it takes to load the model
- start_time = time.time()
- self.model = get_model(model_config=self.model_config,
- device_config=self.device_config,
- load_config=self.load_config,
- lora_config=self.lora_config,
- parallel_config=self.parallel_config,
- scheduler_config=self.scheduler_config,
- cache_config=self.cache_config)
- end_time = time.time()
- self.model_memory_usage = m.consumed_memory
- total_time = end_time - start_time
- if tp > 1:
- if rank == 0:
- logger.info(f"Model loaded in {total_time:.2f} seconds.")
- logger.info(
- "Total model weights memory usage: "
- f"{self.model_memory_usage * tp / float(2**30):.2f} GiB")
- else:
- logger.info(f"Model weights loaded in {total_time:.2f} seconds.")
- logger.info(
- "Total model weights memory usage: "
- f"{self.model_memory_usage / float(2**30):.2f} GiB")
- if self.lora_config:
- assert supports_lora(self.model), "Model does not support LoRA"
- assert not supports_multimodal(
- self.model
- ), "To be tested: multimodal language model with LoRA settings."
- self.lora_manager = LRUCacheWorkerLoRAManager(
- self.scheduler_config.max_num_seqs,
- self.scheduler_config.max_num_batched_tokens,
- self.vocab_size,
- self.lora_config,
- self.device,
- self.model.embedding_modules,
- self.model.embedding_padding_modules,
- max_position_embeddings=self.model.config.
- max_position_embeddings,
- )
- self.model = self.lora_manager.create_lora_manager(self.model)
- if self.prompt_adapter_config:
- self.prompt_adapter_manager = LRUCacheWorkerPromptAdapterManager(
- self.scheduler_config.max_num_seqs,
- self.scheduler_config.max_num_batched_tokens, self.device,
- self.prompt_adapter_config)
- self.model = (
- self.prompt_adapter_manager.create_prompt_adapter_manager(
- self.model))
- if self.kv_cache_dtype == "fp8" and is_hip():
- # Currently only ROCm accepts kv-cache scaling factors
- # via quantization_param_path and this will be deprecated
- # in the future.
- if self.model_config.quantization_param_path is not None:
- if callable(getattr(self.model, "load_kv_cache_scales", None)):
- warnings.warn(
- "Loading kv cache scaling factor from JSON is "
- "deprecated and will be removed. Please include "
- "kv cache scaling factors in the model checkpoint.",
- FutureWarning,
- stacklevel=2)
- self.model.load_kv_cache_scales(
- self.model_config.quantization_param_path)
- logger.info(
- "Loaded KV cache scaling factors from ",
- f"{self.model_config.quantization_param_path}")
- else:
- raise RuntimeError(
- "Using FP8 KV cache and scaling factors provided but "
- f"model {self.model.__class__} does not support loading"
- " scaling factors.", )
- else:
- logger.warning(
- "Using FP8 KV cache but no scaling factors "
- "provided. Defaulting to scaling factors of 1.0. "
- "This may lead to less accurate results!")
- if envs.APHRODITE_TEST_DYNAMO_GRAPH_CAPTURE and supports_dynamo:
- logger.info("Compiling the model using torch.compile...")
- start_time = time.time()
- self.model = torch.compile(self.model,
- fullgraph=True,
- backend="eager")
- end_time = time.time()
- logger.info(
- f"Model compiled in {end_time - start_time:.2f} seconds.")
- def get_model_memory_usage(self):
- return self.model_memory_usage
- def save_sharded_state(
- self,
- path: str,
- pattern: Optional[str] = None,
- max_size: Optional[int] = None,
- ) -> None:
- from aphrodite.modeling.model_loader.loader import ShardedStateLoader
- ShardedStateLoader.save_model(
- self.model,
- path,
- pattern=pattern,
- max_size=max_size,
- )
- def save_tensorized_model(
- self,
- tensorizer_config: TensorizerConfig,
- ) -> None:
- from aphrodite.modeling.model_loader.loader import TensorizerLoader
- TensorizerLoader.save_model(
- self.model,
- tensorizer_config=tensorizer_config,
- )
- def get_max_block_per_batch(self) -> int:
- block_size = self.block_size
- return (self.max_seq_len_to_capture + block_size - 1) // block_size
- def _prepare_model_input_tensors(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- finished_requests_ids: Optional[List[str]] = None
- ) -> TModelInputForGPU:
- """Helper method to prepare the model input based on a given sequence
- group. Prepares metadata needed for the base model forward pass but not
- metadata for possible additional steps, e.g., sampling.
- The API assumes seq_group_metadata_list is sorted by prefill -> decode.
- The result tensors and data structure also batches input in prefill
- -> decode order. For example,
- - input_tokens[:num_prefill_tokens] contains prefill tokens.
- - input_tokens[num_prefill_tokens:] contains decode tokens.
- If cuda graph is required, this API automatically pads inputs.
- """
- builder = self._builder_cls(weakref.proxy(self), finished_requests_ids)
- for seq_group_metadata in seq_group_metadata_list:
- builder.add_seq_group(seq_group_metadata)
- builder.reset_cached_inter_data()
- return builder.build() # type: ignore
- @torch.inference_mode()
- def profile_run(self) -> None:
- rank = get_tensor_model_parallel_rank()
- if rank == 0:
- logger.info("Profiling peak memory usage...")
- # Enable top-k sampling to reflect the accurate memory usage.
- sampling_params = SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
- max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
- max_num_seqs = self.scheduler_config.max_num_seqs
- single_seq_mode = self.scheduler_config.single_user_mode
- if single_seq_mode and rank == 0:
- logger.info("Running in single sequence profiling mode")
- # This represents the maximum number of different requests
- # that will have unique loras, an therefore the max amount of memory
- # consumption create dummy lora request copies from the lora request
- # passed in, which contains a lora from the lora warmup path.
- dummy_lora_requests: List[LoRARequest] = []
- dummy_lora_requests_per_seq: List[LoRARequest] = []
- if self.lora_config:
- assert self.lora_manager is not None
- with self.lora_manager.dummy_lora_cache():
- for idx in range(self.lora_config.max_loras):
- lora_id = idx + 1
- dummy_lora_request = LoRARequest(
- lora_name=f"warmup_{lora_id}",
- lora_int_id=lora_id,
- lora_local_path="/not/a/real/path",
- )
- self.lora_manager.add_dummy_lora(dummy_lora_request,
- rank=LORA_WARMUP_RANK)
- dummy_lora_requests.append(dummy_lora_request)
- if single_seq_mode:
- dummy_lora_requests_per_seq = [dummy_lora_requests[0]]
- else:
- dummy_lora_requests_per_seq = [
- dummy_lora_requests[idx % len(dummy_lora_requests)]
- for idx in range(max_num_seqs)
- ]
- # Profile memory usage with max_num_sequences sequences and the total
- # number of tokens equal to max_num_batched_tokens.
- seqs: List[SequenceGroupMetadata] = []
- # Additional GPU memory may be needed for multi-modal encoding, which
- # needs to be accounted for when calculating the GPU blocks for
- # Aphrodite blocker manager.
- # To exercise the worst scenario for GPU memory consumption,
- # the number of seqs (batch_size) is chosen to maximize the number
- # of images processed.
- max_mm_tokens = self.mm_registry.get_max_multimodal_tokens(
- self.model_config)
- if max_mm_tokens > 0 and not single_seq_mode:
- max_num_seqs_orig = max_num_seqs
- max_num_seqs = min(max_num_seqs,
- max_num_batched_tokens // max_mm_tokens)
- if max_num_seqs < 1:
- expr = (f"min({max_num_seqs_orig}, "
- f"{max_num_batched_tokens} // {max_mm_tokens})")
- logger.warning(
- f"Computed max_num_seqs ({expr}) to be less than 1. "
- "Setting it to the minimum value of 1.")
- max_num_seqs = 1
- batch_size = 0
- if single_seq_mode:
- seq_len = max_num_batched_tokens
- batch_size = seq_len
-
- seq_data, dummy_multi_modal_data = self.input_registry \
- .dummy_data_for_profiling(self.model_config,
- seq_len,
- self.mm_registry)
- seq = SequenceGroupMetadata(
- request_id="0",
- is_prompt=True,
- seq_data={0: seq_data},
- sampling_params=sampling_params,
- block_tables=None,
- lora_request=dummy_lora_requests_per_seq[0]
- if dummy_lora_requests_per_seq else None,
- multi_modal_data=dummy_multi_modal_data,
- )
- seqs.append(seq)
- else:
- # Original multi-sequence profiling logic
- for group_id in range(max_num_seqs):
- seq_len = (max_num_batched_tokens // max_num_seqs +
- (group_id < max_num_batched_tokens % max_num_seqs))
- batch_size += seq_len
-
- seq_data, dummy_multi_modal_data = self.input_registry \
- .dummy_data_for_profiling(self.model_config,
- seq_len,
- self.mm_registry)
- seq = SequenceGroupMetadata(
- request_id=str(group_id),
- is_prompt=True,
- seq_data={group_id: seq_data},
- sampling_params=sampling_params,
- block_tables=None,
- lora_request=dummy_lora_requests_per_seq[group_id]
- if dummy_lora_requests_per_seq else None,
- multi_modal_data=dummy_multi_modal_data,
- )
- seqs.append(seq)
- # Run the model with the dummy inputs.
- num_layers = self.model_config.get_num_layers(self.parallel_config)
- kv_caches = [None] * num_layers
- finished_requests_ids = [seq.request_id for seq in seqs]
- model_input = self.prepare_model_input(
- seqs, finished_requests_ids=finished_requests_ids)
- intermediate_tensors = None
- if not get_pp_group().is_first_rank:
- intermediate_tensors = self.model.make_empty_intermediate_tensors(
- batch_size=batch_size,
- dtype=self.model_config.dtype,
- device=self.device)
- self.execute_model(model_input, kv_caches, intermediate_tensors)
- torch.cuda.synchronize()
- return
- def remove_all_loras(self):
- if not self.lora_manager:
- raise RuntimeError("LoRA is not enabled.")
- self.lora_manager.remove_all_adapters()
- def set_active_loras(self, lora_requests: Set[LoRARequest],
- lora_mapping: LoRAMapping) -> None:
- if not self.lora_manager:
- raise RuntimeError("LoRA is not enabled.")
- self.lora_manager.set_active_adapters(lora_requests, lora_mapping)
- def add_lora(self, lora_request: LoRARequest) -> bool:
- if not self.lora_manager:
- raise RuntimeError("LoRA is not enabled.")
- return self.lora_manager.add_adapter(lora_request)
- def remove_lora(self, lora_id: int) -> bool:
- if not self.lora_manager:
- raise RuntimeError("LoRA is not enabled.")
- return self.lora_manager.remove_adapter(lora_id)
- def pin_lora(self, lora_id: int) -> bool:
- if not self.lora_manager:
- raise RuntimeError("LoRA is not enabled.")
- return self.lora_manager.pin_adapter(lora_id)
- def list_loras(self) -> Set[int]:
- if not self.lora_manager:
- raise RuntimeError("LoRA is not enabled.")
- return self.lora_manager.list_adapters()
- def remove_all_prompt_adapters(self):
- if not self.prompt_adapter_manager:
- raise RuntimeError("PromptAdapter is not enabled.")
- self.prompt_adapter_manager.remove_all_adapters()
- def set_active_prompt_adapters(
- self, prompt_adapter_requests: Set[PromptAdapterRequest],
- prompt_adapter_mapping: PromptAdapterMapping) -> None:
- if not self.prompt_adapter_manager:
- raise RuntimeError("PromptAdapter is not enabled.")
- self.prompt_adapter_manager.set_active_adapters(
- prompt_adapter_requests, prompt_adapter_mapping)
- def add_prompt_adapter(
- self, prompt_adapter_request: PromptAdapterRequest) -> bool:
- if not self.prompt_adapter_manager:
- raise RuntimeError("PromptAdapter is not enabled.")
- return self.prompt_adapter_manager.add_adapter(prompt_adapter_request)
- def remove_prompt_adapter(self, prompt_adapter_id: int) -> bool:
- if not self.prompt_adapter_manager:
- raise RuntimeError("PromptAdapter is not enabled.")
- return self.prompt_adapter_manager.remove_adapter(prompt_adapter_id)
- def pin_prompt_adapter(self, prompt_adapter_id: int) -> bool:
- if not self.prompt_adapter_manager:
- raise RuntimeError("PromptAdapter is not enabled.")
- return self.prompt_adapter_manager.pin_adapter(prompt_adapter_id)
- def list_prompt_adapters(self) -> Set[int]:
- if not self.prompt_adapter_manager:
- raise RuntimeError("PromptAdapter is not enabled.")
- return self.prompt_adapter_manager.list_adapters()
- @torch.inference_mode()
- def capture_model(self, kv_caches: List[List[torch.Tensor]]) -> None:
- """Cuda graph capture a model.
- Note that CUDA graph's performance gain is negligible if number
- of batched tokens are larger than 200. And since CUDA graph
- requires fixed sized tensors, supporting large/variable batch
- size requires high GPU memory overhead. Thus, Aphrodite only captures
- decoding requests. Mixed batch (chunked prefill + decoding) or
- prefill requests are not captured.
- Since it is used for decoding-only, it assumes there's only 1 token
- per sequence in the batch.
- """
- tp_rank = get_tensor_model_parallel_rank()
- assert not self.model_config.enforce_eager
- if tp_rank == 0:
- logger.info(
- "Capturing the model for CUDA graphs. This may lead to "
- "unexpected consequences if the model is not static. To "
- "run the model in eager mode, set 'enforce_eager=True' or "
- "use '--enforce-eager' in the CLI.")
- logger.info(
- "CUDA graphs can take additional 1~3 GiB memory per GPU. "
- "If you are running out of memory, consider decreasing "
- "`gpu_memory_utilization` or enforcing eager mode. "
- "You can also reduce the `max_num_seqs` as needed "
- "to decrease memory usage.")
- start_time = time.perf_counter()
- # Prepare dummy inputs. These will be reused for all batch sizes.
- max_batch_size = self.max_batchsize_to_capture
- input_tokens = torch.zeros(max_batch_size, dtype=torch.long).cuda()
- input_positions = torch.zeros(max_batch_size, dtype=torch.long).cuda()
- # Prepare dummy previous_hidden_states only if needed by the model.
- # This is used by draft models such as EAGLE.
- previous_hidden_states = None
- if "previous_hidden_states" in inspect.signature(
- self.model.forward).parameters:
- previous_hidden_states = torch.empty(
- [max_batch_size,
- self.model_config.get_hidden_size()],
- dtype=self.model_config.dtype,
- device=self.device)
- intermediate_inputs = None
- if not get_pp_group().is_first_rank:
- intermediate_inputs = self.model.make_empty_intermediate_tensors(
- batch_size=max_batch_size,
- dtype=self.model_config.dtype,
- device=self.device)
- # Prepare buffer for outputs. These will be reused for all batch sizes.
- # It will be filled after the first graph capture.
- hidden_or_intermediate_states: List[Optional[torch.Tensor]] = [
- None
- ] * self.parallel_config.pipeline_parallel_size
- graph_batch_size = self.max_batchsize_to_capture
- batch_size_capture_list = [
- bs for bs in _BATCH_SIZES_TO_CAPTURE if bs <= graph_batch_size
- ]
- with self.attn_state.graph_capture(
- max_batch_size), graph_capture() as graph_capture_context:
- # NOTE: Capturing the largest batch size first may help reduce the
- # memory usage of CUDA graph.
- for virtual_engine in range(
- self.parallel_config.pipeline_parallel_size):
- for batch_size in reversed(batch_size_capture_list):
- attn_metadata = (
- self.attn_state.graph_capture_get_metadata_for_batch(
- batch_size))
- if self.lora_config:
- lora_mapping = LoRAMapping(
- **dict(index_mapping=[0] * batch_size,
- prompt_mapping=[0] * batch_size,
- is_prefill=False))
- self.set_active_loras(set(), lora_mapping)
- if self.prompt_adapter_config:
- prompt_adapter_mapping = PromptAdapterMapping(
- [-1] * batch_size,
- [-1] * batch_size,
- )
- self.set_active_prompt_adapters(
- set(), prompt_adapter_mapping)
- graph_runner = CUDAGraphRunner(
- self.model, self.attn_backend.get_name(),
- self.attn_state.graph_clone(batch_size))
- capture_inputs = {
- "input_ids":
- input_tokens[:batch_size],
- "positions":
- input_positions[:batch_size],
- "hidden_or_intermediate_states":
- hidden_or_intermediate_states[
- virtual_engine] # type: ignore
- [:batch_size]
- if hidden_or_intermediate_states[virtual_engine]
- is not None else None,
- "intermediate_inputs":
- intermediate_inputs[:batch_size]
- if intermediate_inputs is not None else None,
- "kv_caches":
- kv_caches[virtual_engine],
- "attn_metadata":
- attn_metadata,
- "memory_pool":
- self.graph_memory_pool,
- "stream":
- graph_capture_context.stream
- }
- if previous_hidden_states is not None:
- capture_inputs[
- "previous_hidden_states"] = previous_hidden_states[:
- batch_size]
- if self.has_seqlen_agnostic:
- # Only used by Mamba-based models CUDA graph atm (Jamba)
- capture_inputs.update({
- "seqlen_agnostic_capture_inputs":
- self.model.get_seqlen_agnostic_capture_inputs(
- batch_size)
- })
- graph_runner.capture(**capture_inputs)
- self.graph_memory_pool = graph_runner.graph.pool()
- self.graph_runners[virtual_engine][batch_size] = (
- graph_runner)
- end_time = time.perf_counter()
- elapsed_time = end_time - start_time
- # This usually takes < 10 seconds.
- if tp_rank == 0:
- logger.info(f"Graph capturing finished in {elapsed_time:.2f} secs")
- @property
- def vocab_size(self) -> int:
- return self.model_config.get_vocab_size()
- class ModelRunner(GPUModelRunnerBase[ModelInputForGPUWithSamplingMetadata]):
- """
- GPU model runner with sampling step.
- """
- _model_input_cls: Type[ModelInputForGPUWithSamplingMetadata] = (
- ModelInputForGPUWithSamplingMetadata)
- _builder_cls: Type[ModelInputForGPUBuilder] = ModelInputForGPUBuilder
- def make_model_input_from_broadcasted_tensor_dict(
- self,
- tensor_dict: Dict[str, Any],
- ) -> ModelInputForGPUWithSamplingMetadata:
- model_input = \
- ModelInputForGPUWithSamplingMetadata.from_broadcasted_tensor_dict(
- tensor_dict,
- attn_backend=self.attn_backend,
- )
- return model_input
- def prepare_model_input(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- virtual_engine: int = 0,
- finished_requests_ids: Optional[List[str]] = None
- ) -> ModelInputForGPUWithSamplingMetadata:
- """Prepare the model input based on a given sequence group, including
- metadata for the sampling step.
- The API assumes seq_group_metadata_list is sorted by prefill -> decode.
- The result tensors and data structure also batches input in prefill
- -> decode order. For example,
- - input_tokens[:num_prefill_tokens] contains prefill tokens.
- - input_tokens[num_prefill_tokens:] contains decode tokens.
- If cuda graph is required, this API automatically pads inputs.
- """
- model_input = self._prepare_model_input_tensors(
- seq_group_metadata_list, finished_requests_ids)
- if get_pp_group().is_last_rank:
- # Sampling metadata is only required for the final pp group
- generators = self.get_generators(finished_requests_ids)
- sampling_metadata = SamplingMetadata.prepare(
- seq_group_metadata_list, model_input.seq_lens,
- model_input.query_lens, self.device, self.pin_memory,
- generators, self.sampling_metadata_cache)
- else:
- sampling_metadata = None
- is_prompt = (seq_group_metadata_list[0].is_prompt
- if seq_group_metadata_list else None)
- return dataclasses.replace(model_input,
- sampling_metadata=sampling_metadata,
- is_prompt=is_prompt,
- virtual_engine=virtual_engine)
- @torch.inference_mode()
- def execute_model(
- self,
- model_input: ModelInputForGPUWithSamplingMetadata,
- kv_caches: List[torch.Tensor],
- intermediate_tensors: Optional[IntermediateTensors] = None,
- num_steps: int = 1,
- ) -> Optional[Union[List[SamplerOutput], IntermediateTensors]]:
- if num_steps > 1:
- raise ValueError("num_steps > 1 is not supported in ModelRunner")
- if self.lora_config:
- assert model_input.lora_requests is not None
- assert model_input.lora_mapping is not None
- self.set_active_loras(model_input.lora_requests,
- model_input.lora_mapping)
- if self.prompt_adapter_config:
- assert model_input.prompt_adapter_requests is not None
- assert model_input.prompt_adapter_mapping is not None
- self.set_active_prompt_adapters(
- model_input.prompt_adapter_requests,
- model_input.prompt_adapter_mapping)
- self.attn_state.begin_forward(model_input)
- # Currently cuda graph is only supported by the decode phase.
- assert model_input.attn_metadata is not None
- prefill_meta = model_input.attn_metadata.prefill_metadata
- decode_meta = model_input.attn_metadata.decode_metadata
- # TODO: We can remove this once all
- # virtual engines share the same kv cache.
- virtual_engine = model_input.virtual_engine
- if prefill_meta is None and decode_meta.use_cuda_graph:
- assert model_input.input_tokens is not None
- graph_batch_size = model_input.input_tokens.shape[0]
- model_executable = self.graph_runners[virtual_engine][
- graph_batch_size]
- else:
- model_executable = self.model
- multi_modal_kwargs = model_input.multi_modal_kwargs or {}
- seqlen_agnostic_kwargs = {
- "finished_requests_ids": model_input.finished_requests_ids,
- "request_ids_to_seq_ids": model_input.request_ids_to_seq_ids,
- } if self.has_seqlen_agnostic else {}
- hidden_or_intermediate_states = model_executable(
- input_ids=model_input.input_tokens,
- positions=model_input.input_positions,
- kv_caches=kv_caches,
- attn_metadata=model_input.attn_metadata,
- intermediate_tensors=intermediate_tensors,
- **MultiModalInputs.as_kwargs(multi_modal_kwargs,
- device=self.device),
- **seqlen_agnostic_kwargs,
- )
- # Compute the logits in the last pipeline stage.
- if not get_pp_group().is_last_rank:
- return hidden_or_intermediate_states
- logits = self.model.compute_logits(hidden_or_intermediate_states,
- model_input.sampling_metadata)
- if not self.is_driver_worker:
- return []
- if model_input.async_callback is not None:
- model_input.async_callback()
- # Sample the next token.
- output: SamplerOutput = self.model.sample(
- logits=logits,
- sampling_metadata=model_input.sampling_metadata,
- )
- if self.return_hidden_states:
- # we only need to pass hidden states of most recent token
- assert model_input.sampling_metadata is not None
- indices = model_input.sampling_metadata.selected_token_indices
- if model_input.is_prompt:
- hidden_states = hidden_or_intermediate_states.index_select(
- 0, indices)
- output.prefill_hidden_states = hidden_or_intermediate_states
- elif decode_meta.use_cuda_graph:
- hidden_states = hidden_or_intermediate_states[:len(indices)]
- else:
- hidden_states = hidden_or_intermediate_states
- output.hidden_states = hidden_states
- return [output]
- class CUDAGraphRunner:
- def __init__(self, model: nn.Module, backend_name: str,
- attn_state: AttentionState):
- self.model = model
- self.backend_name = backend_name
- self.attn_state = attn_state
- self.input_buffers: Dict[str, torch.Tensor] = {}
- self.output_buffers: Dict[str, torch.Tensor] = {}
- self._graph: Optional[torch.cuda.CUDAGraph] = None
- @property
- def graph(self):
- assert self._graph is not None
- return self._graph
- def capture(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- hidden_or_intermediate_states: Optional[Union[IntermediateTensors,
- torch.Tensor]],
- intermediate_inputs: Optional[IntermediateTensors],
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- memory_pool: Optional[Tuple[int, int]],
- stream: torch.cuda.Stream,
- **kwargs,
- ) -> Union[torch.Tensor, IntermediateTensors]:
- assert self._graph is None
- # Run the model a few times without capturing the graph.
- # This is to make sure that the captured graph does not include the
- # kernel launches for initial benchmarking (e.g., Triton autotune).
- # Note one iteration is not enough for torch.jit.script
- for _ in range(_NUM_WARMUP_ITERS):
- self.model(
- input_ids=input_ids,
- positions=positions,
- kv_caches=kv_caches,
- attn_metadata=attn_metadata,
- intermediate_tensors=intermediate_inputs,
- **kwargs,
- )
- torch.cuda.synchronize()
- # Capture the graph.
- self._graph = torch.cuda.CUDAGraph()
- with torch.cuda.graph(self._graph, pool=memory_pool, stream=stream):
- output_hidden_or_intermediate_states = self.model(
- input_ids=input_ids,
- positions=positions,
- kv_caches=kv_caches,
- attn_metadata=attn_metadata,
- intermediate_tensors=intermediate_inputs,
- **kwargs,
- )
- if hidden_or_intermediate_states is not None:
- if get_pp_group().is_last_rank:
- hidden_or_intermediate_states.copy_(
- output_hidden_or_intermediate_states)
- else:
- for key in hidden_or_intermediate_states.tensors:
- hidden_or_intermediate_states[key].copy_(
- output_hidden_or_intermediate_states[key])
- else:
- hidden_or_intermediate_states = (
- output_hidden_or_intermediate_states)
- del output_hidden_or_intermediate_states
- # make sure `output_hidden_states` is deleted
- # in the graph's memory pool
- gc.collect()
- torch.cuda.synchronize()
- # Save the input and output buffers.
- self.input_buffers = {
- "input_ids": input_ids,
- "positions": positions,
- "kv_caches": kv_caches,
- **self.attn_state.get_graph_input_buffers(attn_metadata),
- **kwargs,
- }
- if intermediate_inputs is not None:
- self.input_buffers.update(intermediate_inputs.tensors)
- if get_pp_group().is_last_rank:
- self.output_buffers = {
- "hidden_states": hidden_or_intermediate_states
- }
- else:
- self.output_buffers = hidden_or_intermediate_states
- return hidden_or_intermediate_states
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- intermediate_tensors: Optional[IntermediateTensors],
- **kwargs,
- ) -> torch.Tensor:
- # KV caches are fixed tensors, so we don't need to copy them.
- del kv_caches
- # Copy the input tensors to the input buffers.
- self.input_buffers["input_ids"].copy_(input_ids, non_blocking=True)
- self.input_buffers["positions"].copy_(positions, non_blocking=True)
- if self.backend_name != "No attention":
- self.input_buffers["slot_mapping"].copy_(
- attn_metadata.slot_mapping, non_blocking=True)
- self.attn_state.prepare_graph_input_buffers(self.input_buffers,
- attn_metadata)
- if "seqlen_agnostic_capture_inputs" in self.input_buffers:
- self.model.copy_inputs_before_cuda_graphs(self.input_buffers,
- **kwargs)
- if "previous_hidden_states" in self.input_buffers:
- self.input_buffers["previous_hidden_states"].copy_(
- kwargs["previous_hidden_states"], non_blocking=True)
- if intermediate_tensors is not None:
- for key in intermediate_tensors.tensors:
- self.input_buffers[key].copy_(intermediate_tensors[key],
- non_blocking=True)
- # Run the graph.
- self.graph.replay()
- # Return the output tensor.
- if get_pp_group().is_last_rank:
- return self.output_buffers["hidden_states"]
- return self.output_buffers
- def __call__(self, *args, **kwargs):
- return self.forward(*args, **kwargs)
- def _get_graph_batch_size(batch_size: int) -> int:
- """Returns the padded batch size given actual batch size.
- Batch sizes are 1, 2, 4, _BATCH_SIZE_ALIGNMENT,
- 2*_BATCH_SIZE_ALIGNMENT, 3*_BATCH_SIZE_ALIGNMENT...
- """
- if batch_size <= 2:
- return batch_size
- elif batch_size <= 4:
- return 4
- else:
- return ((batch_size + _BATCH_SIZE_ALIGNMENT - 1) //
- _BATCH_SIZE_ALIGNMENT * _BATCH_SIZE_ALIGNMENT)
- def _get_max_graph_batch_size(max_num_seqs: int) -> int:
- """
- max_num_seqs: Maximum number of sequences in a batch.
- _BATCH_SIZES_TO_CAPTURE: all the sizes that we want to capture.
- pad the max_num_seqs if necessary by calling _get_graph_batch_size,
- which will deal with some edge cases like 1, 2, 4.
- if the padded size is in _BATCH_SIZES_TO_CAPTURE, return the padded size.
- if not, it means the padded size is larger than the largest size in
- _BATCH_SIZES_TO_CAPTURE, return the largest size in _BATCH_SIZES_TO_CAPTURE.
- """
- padded_size = _get_graph_batch_size(max_num_seqs)
- if padded_size in _BATCH_SIZES_TO_CAPTURE:
- return padded_size
- assert padded_size > _BATCH_SIZES_TO_CAPTURE[-1]
- return _BATCH_SIZES_TO_CAPTURE[-1]
|