123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890 |
- # ruff: noqa
- from __future__ import annotations
- import sys
- from enum import Enum, IntEnum, auto
- from typing import Any
- #
- # constants
- #
- GGUF_MAGIC = 0x46554747 # "GGUF"
- GGUF_VERSION = 3
- GGUF_DEFAULT_ALIGNMENT = 32
- #
- # metadata keys
- #
- class Keys:
- class General:
- ARCHITECTURE = "general.architecture"
- QUANTIZATION_VERSION = "general.quantization_version"
- ALIGNMENT = "general.alignment"
- NAME = "general.name"
- AUTHOR = "general.author"
- VERSION = "general.version"
- URL = "general.url"
- DESCRIPTION = "general.description"
- LICENSE = "general.license"
- SOURCE_URL = "general.source.url"
- SOURCE_HF_REPO = "general.source.huggingface.repository"
- FILE_TYPE = "general.file_type"
- class LLM:
- VOCAB_SIZE = "{arch}.vocab_size"
- CONTEXT_LENGTH = "{arch}.context_length"
- EMBEDDING_LENGTH = "{arch}.embedding_length"
- BLOCK_COUNT = "{arch}.block_count"
- FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
- USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
- TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
- EXPERT_COUNT = "{arch}.expert_count"
- EXPERT_USED_COUNT = "{arch}.expert_used_count"
- POOLING_TYPE = "{arch}.pooling_type"
- LOGIT_SCALE = "{arch}.logit_scale"
- class Attention:
- HEAD_COUNT = "{arch}.attention.head_count"
- HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
- MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
- CLAMP_KQV = "{arch}.attention.clamp_kqv"
- KEY_LENGTH = "{arch}.attention.key_length"
- VALUE_LENGTH = "{arch}.attention.value_length"
- LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
- LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
- CAUSAL = "{arch}.attention.causal"
- class Rope:
- DIMENSION_COUNT = "{arch}.rope.dimension_count"
- FREQ_BASE = "{arch}.rope.freq_base"
- SCALING_TYPE = "{arch}.rope.scaling.type"
- SCALING_FACTOR = "{arch}.rope.scaling.factor"
- SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
- SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
- class SSM:
- CONV_KERNEL = "{arch}.ssm.conv_kernel"
- INNER_SIZE = "{arch}.ssm.inner_size"
- STATE_SIZE = "{arch}.ssm.state_size"
- TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
- class Tokenizer:
- MODEL = "tokenizer.ggml.model"
- LIST = "tokenizer.ggml.tokens"
- TOKEN_TYPE = "tokenizer.ggml.token_type"
- TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
- SCORES = "tokenizer.ggml.scores"
- MERGES = "tokenizer.ggml.merges"
- BOS_ID = "tokenizer.ggml.bos_token_id"
- EOS_ID = "tokenizer.ggml.eos_token_id"
- UNK_ID = "tokenizer.ggml.unknown_token_id"
- SEP_ID = "tokenizer.ggml.seperator_token_id"
- PAD_ID = "tokenizer.ggml.padding_token_id"
- CLS_ID = "tokenizer.ggml.cls_token_id"
- MASK_ID = "tokenizer.ggml.mask_token_id"
- ADD_BOS = "tokenizer.ggml.add_bos_token"
- ADD_EOS = "tokenizer.ggml.add_eos_token"
- ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
- HF_JSON = "tokenizer.huggingface.json"
- RWKV = "tokenizer.rwkv.world"
- CHAT_TEMPLATE = "tokenizer.chat_template"
- #
- # recommended mapping of model tensor names for storage in gguf
- #
- class MODEL_ARCH(IntEnum):
- LLAMA = auto()
- FALCON = auto()
- BAICHUAN = auto()
- GROK = auto()
- GPT2 = auto()
- GPTJ = auto()
- GPTNEOX = auto()
- MPT = auto()
- STARCODER = auto()
- PERSIMMON = auto()
- REFACT = auto()
- BERT = auto()
- NOMIC_BERT = auto()
- BLOOM = auto()
- STABLELM = auto()
- QWEN = auto()
- QWEN2 = auto()
- PHI2 = auto()
- PLAMO = auto()
- CODESHELL = auto()
- ORION = auto()
- INTERNLM2 = auto()
- MINICPM = auto()
- GEMMA = auto()
- STARCODER2 = auto()
- MAMBA = auto()
- XVERSE = auto()
- COMMAND_R = auto()
- DBRX = auto()
- class MODEL_TENSOR(IntEnum):
- TOKEN_EMBD = auto()
- TOKEN_EMBD_NORM = auto()
- TOKEN_TYPES = auto()
- POS_EMBD = auto()
- OUTPUT = auto()
- OUTPUT_NORM = auto()
- ROPE_FREQS = auto()
- ATTN_Q = auto()
- ATTN_K = auto()
- ATTN_V = auto()
- ATTN_QKV = auto()
- ATTN_OUT = auto()
- ATTN_NORM = auto()
- ATTN_NORM_2 = auto()
- ATTN_OUT_NORM = auto()
- ATTN_ROT_EMBD = auto()
- FFN_GATE_INP = auto()
- FFN_NORM = auto()
- FFN_GATE = auto()
- FFN_DOWN = auto()
- FFN_UP = auto()
- FFN_ACT = auto()
- FFN_GATE_EXP = auto()
- FFN_DOWN_EXP = auto()
- FFN_UP_EXP = auto()
- ATTN_Q_NORM = auto()
- ATTN_K_NORM = auto()
- LAYER_OUT_NORM = auto()
- SSM_IN = auto()
- SSM_CONV1D = auto()
- SSM_X = auto()
- SSM_DT = auto()
- SSM_A = auto()
- SSM_D = auto()
- SSM_OUT = auto()
- MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
- MODEL_ARCH.LLAMA: "llama",
- MODEL_ARCH.FALCON: "falcon",
- MODEL_ARCH.BAICHUAN: "baichuan",
- MODEL_ARCH.GROK: "grok",
- MODEL_ARCH.GPT2: "gpt2",
- MODEL_ARCH.GPTJ: "gptj",
- MODEL_ARCH.GPTNEOX: "gptneox",
- MODEL_ARCH.MPT: "mpt",
- MODEL_ARCH.STARCODER: "starcoder",
- MODEL_ARCH.PERSIMMON: "persimmon",
- MODEL_ARCH.REFACT: "refact",
- MODEL_ARCH.BERT: "bert",
- MODEL_ARCH.NOMIC_BERT: "nomic-bert",
- MODEL_ARCH.BLOOM: "bloom",
- MODEL_ARCH.STABLELM: "stablelm",
- MODEL_ARCH.QWEN: "qwen",
- MODEL_ARCH.QWEN2: "qwen2",
- MODEL_ARCH.PHI2: "phi2",
- MODEL_ARCH.PLAMO: "plamo",
- MODEL_ARCH.CODESHELL: "codeshell",
- MODEL_ARCH.ORION: "orion",
- MODEL_ARCH.INTERNLM2: "internlm2",
- MODEL_ARCH.MINICPM: "minicpm",
- MODEL_ARCH.GEMMA: "gemma",
- MODEL_ARCH.STARCODER2: "starcoder2",
- MODEL_ARCH.MAMBA: "mamba",
- MODEL_ARCH.XVERSE: "xverse",
- MODEL_ARCH.COMMAND_R: "command-r",
- MODEL_ARCH.DBRX: "dbrx",
- }
- TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
- MODEL_TENSOR.TOKEN_EMBD: "token_embd",
- MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
- MODEL_TENSOR.TOKEN_TYPES: "token_types",
- MODEL_TENSOR.POS_EMBD: "position_embd",
- MODEL_TENSOR.OUTPUT_NORM: "output_norm",
- MODEL_TENSOR.OUTPUT: "output",
- MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
- MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
- MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
- MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
- MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
- MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
- MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
- MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
- MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
- MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
- MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
- MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
- MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
- MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
- MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
- MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
- MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
- MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
- MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
- MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
- MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
- MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
- MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
- MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
- MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
- MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
- MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
- MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
- MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
- }
- MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
- MODEL_ARCH.LLAMA: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_GATE_INP,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.FFN_GATE_EXP,
- MODEL_TENSOR.FFN_DOWN_EXP,
- MODEL_TENSOR.FFN_UP_EXP,
- ],
- MODEL_ARCH.GROK: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.ATTN_OUT_NORM,
- MODEL_TENSOR.FFN_GATE_INP,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.FFN_GATE_EXP,
- MODEL_TENSOR.FFN_DOWN_EXP,
- MODEL_TENSOR.FFN_UP_EXP,
- MODEL_TENSOR.LAYER_OUT_NORM,
- ],
- MODEL_ARCH.GPTNEOX: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.FALCON: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_NORM_2,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.BAICHUAN: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.STARCODER: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.POS_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.BERT: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.TOKEN_EMBD_NORM,
- MODEL_TENSOR.TOKEN_TYPES,
- MODEL_TENSOR.POS_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.ATTN_OUT_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.LAYER_OUT_NORM,
- ],
- MODEL_ARCH.NOMIC_BERT: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.TOKEN_EMBD_NORM,
- MODEL_TENSOR.TOKEN_TYPES,
- MODEL_TENSOR.POS_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.ATTN_OUT_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.LAYER_OUT_NORM,
- ],
- MODEL_ARCH.MPT: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.FFN_ACT,
- MODEL_TENSOR.ATTN_Q_NORM,
- MODEL_TENSOR.ATTN_K_NORM,
- MODEL_TENSOR.POS_EMBD,
- ],
- MODEL_ARCH.GPTJ: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.PERSIMMON: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.ATTN_Q_NORM,
- MODEL_TENSOR.ATTN_K_NORM,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
- MODEL_ARCH.REFACT: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.BLOOM: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.TOKEN_EMBD_NORM,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.STABLELM: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.QWEN: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.QWEN2: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.PLAMO: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.GPT2: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.POS_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.PHI2: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.CODESHELL: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.POS_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.ORION: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.INTERNLM2: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.MINICPM: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_GATE_INP,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.FFN_GATE_EXP,
- MODEL_TENSOR.FFN_DOWN_EXP,
- MODEL_TENSOR.FFN_UP_EXP,
- ],
- MODEL_ARCH.GEMMA: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.FFN_NORM,
- ],
- MODEL_ARCH.STARCODER2: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.MAMBA: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.SSM_IN,
- MODEL_TENSOR.SSM_CONV1D,
- MODEL_TENSOR.SSM_X,
- MODEL_TENSOR.SSM_DT,
- MODEL_TENSOR.SSM_A,
- MODEL_TENSOR.SSM_D,
- MODEL_TENSOR.SSM_OUT,
- ],
- MODEL_ARCH.XVERSE: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- MODEL_TENSOR.FFN_NORM,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- ],
- MODEL_ARCH.COMMAND_R: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_Q,
- MODEL_TENSOR.ATTN_K,
- MODEL_TENSOR.ATTN_V,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.FFN_GATE,
- MODEL_TENSOR.FFN_DOWN,
- MODEL_TENSOR.FFN_UP,
- MODEL_TENSOR.ATTN_K_NORM,
- MODEL_TENSOR.ATTN_Q_NORM,
- ],
- MODEL_ARCH.DBRX: [
- MODEL_TENSOR.TOKEN_EMBD,
- MODEL_TENSOR.OUTPUT_NORM,
- MODEL_TENSOR.OUTPUT,
- MODEL_TENSOR.ATTN_NORM,
- MODEL_TENSOR.ATTN_QKV,
- MODEL_TENSOR.ATTN_OUT,
- MODEL_TENSOR.ATTN_OUT_NORM,
- MODEL_TENSOR.FFN_GATE_INP,
- MODEL_TENSOR.FFN_GATE_EXP,
- MODEL_TENSOR.FFN_DOWN_EXP,
- MODEL_TENSOR.FFN_UP_EXP,
- ],
- # TODO
- }
- # tensors that will not be serialized
- MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
- MODEL_ARCH.LLAMA: [
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
- MODEL_ARCH.BAICHUAN: [
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
- MODEL_ARCH.PERSIMMON: [
- MODEL_TENSOR.ROPE_FREQS,
- ],
- MODEL_ARCH.QWEN: [
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
- MODEL_ARCH.CODESHELL: [
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
- MODEL_ARCH.ORION: [
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
- MODEL_ARCH.STARCODER2: [
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
- MODEL_ARCH.XVERSE: [
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
- }
- #
- # types
- #
- class TokenType(IntEnum):
- NORMAL = 1
- UNKNOWN = 2
- CONTROL = 3
- USER_DEFINED = 4
- UNUSED = 5
- BYTE = 6
- class RopeScalingType(Enum):
- NONE = 'none'
- LINEAR = 'linear'
- YARN = 'yarn'
- class PoolingType(IntEnum):
- NONE = 0
- MEAN = 1
- CLS = 2
- class GGMLQuantizationType(IntEnum):
- F32 = 0
- F16 = 1
- Q4_0 = 2
- Q4_1 = 3
- Q5_0 = 6
- Q5_1 = 7
- Q8_0 = 8
- Q8_1 = 9
- Q2_K = 10
- Q3_K = 11
- Q4_K = 12
- Q5_K = 13
- Q6_K = 14
- Q8_K = 15
- IQ2_XXS = 16
- IQ2_XS = 17
- IQ3_XXS = 18
- IQ1_S = 19
- IQ4_NL = 20
- IQ3_S = 21
- IQ2_S = 22
- IQ4_XS = 23
- I8 = 24
- I16 = 25
- I32 = 26
- I64 = 27
- F64 = 28
- IQ1_M = 29
- class GGUFEndian(IntEnum):
- LITTLE = 0
- BIG = 1
- class GGUFValueType(IntEnum):
- UINT8 = 0
- INT8 = 1
- UINT16 = 2
- INT16 = 3
- UINT32 = 4
- INT32 = 5
- FLOAT32 = 6
- BOOL = 7
- STRING = 8
- ARRAY = 9
- UINT64 = 10
- INT64 = 11
- FLOAT64 = 12
- @staticmethod
- def get_type(val: Any) -> GGUFValueType:
- if isinstance(val, (str, bytes, bytearray)):
- return GGUFValueType.STRING
- elif isinstance(val, list):
- return GGUFValueType.ARRAY
- elif isinstance(val, float):
- return GGUFValueType.FLOAT32
- elif isinstance(val, bool):
- return GGUFValueType.BOOL
- elif isinstance(val, int):
- return GGUFValueType.INT32
- # TODO: need help with 64-bit types in Python
- else:
- print("Unknown type:", type(val))
- sys.exit()
- # Note: Does not support GGML_QKK_64
- QK_K = 256
- # Items here are (block size, type size)
- GGML_QUANT_SIZES = {
- GGMLQuantizationType.F32: (1, 4),
- GGMLQuantizationType.F16: (1, 2),
- GGMLQuantizationType.Q4_0: (32, 2 + 16),
- GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
- GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
- GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
- GGMLQuantizationType.Q8_0: (32, 2 + 32),
- GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
- GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
- GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
- GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
- GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
- GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
- GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
- GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
- GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
- GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
- GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
- GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
- GGMLQuantizationType.IQ3_S:
- (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
- GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
- GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
- GGMLQuantizationType.I8: (1, 1),
- GGMLQuantizationType.I16: (1, 2),
- GGMLQuantizationType.I32: (1, 4),
- GGMLQuantizationType.I64: (1, 8),
- GGMLQuantizationType.F64: (1, 8),
- }
- # Aliases for backward compatibility.
- # general
- KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
- KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
- KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
- KEY_GENERAL_NAME = Keys.General.NAME
- KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
- KEY_GENERAL_URL = Keys.General.URL
- KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
- KEY_GENERAL_LICENSE = Keys.General.LICENSE
- KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
- KEY_GENERAL_SOURCE_HF_REPO = Keys.General.SOURCE_HF_REPO
- KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
- # LLM
- KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
- KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
- KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
- KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
- KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
- KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
- KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
- # attention
- KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
- KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
- KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
- KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
- KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
- KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
- # RoPE
- KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
- KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
- KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
- KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
- KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
- KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
- # SSM
- KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
- KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
- KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
- KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
- # tokenization
- KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
- KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
- KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
- KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
- KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
- KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
- KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
- KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
- KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
- KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
- KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
- KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
- KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
- KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
|