123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818 |
- import contextlib
- import functools
- from typing import List, Optional, Tuple, Type, Union
- import torch
- from loguru import logger
- from aphrodite._core_ext import ScalarType
- from aphrodite.common.utils import is_hip
- from aphrodite.platforms import current_platform
- if not current_platform.is_tpu():
- try:
- import aphrodite._C
- except ImportError as e:
- logger.warning(f"Failed to import from aphrodite._C with {e}")
- if current_platform.is_cuda():
- try:
- import aphrodite._hadamard_C
- except ImportError as e:
- logger.warning(f"Failed to import from aphrodite._hadamard_C with {e}")
- with contextlib.suppress(ImportError):
- # ruff: noqa: F401
- import aphrodite._moe_C
- def hint_on_error(fn):
- @functools.wraps(fn)
- def wrapper(*args, **kwargs):
- try:
- return fn(*args, **kwargs)
- except AttributeError as e:
- msg = (
- f"Error in calling custom op {fn.__name__}: {e}\n"
- f"Possibly you have built or installed an obsolete version of aphrodite.\n"
- f"Please try a clean build and install of aphrodite,"
- f"or remove old built files such as aphrodite/*.so and build/ ."
- )
- logger.error(msg)
- raise e
- return wrapper
- # activation ops
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
- torch.ops._C.silu_and_mul(out, x)
- def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
- torch.ops._C.gelu_and_mul(out, x)
- def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
- torch.ops._C.gelu_tanh_and_mul(out, x)
- def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
- torch.ops._C.gelu_fast(out, x)
- def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
- torch.ops._C.gelu_new(out, x)
- def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
- torch.ops._C.gelu_quick(out, x)
- # page attention ops
- def paged_attention_v1(
- out: torch.Tensor,
- query: torch.Tensor,
- key_cache: torch.Tensor,
- value_cache: torch.Tensor,
- num_kv_heads: int,
- scale: float,
- block_tables: torch.Tensor,
- seq_lens: torch.Tensor,
- block_size: int,
- max_seq_len: int,
- alibi_slopes: Optional[torch.Tensor],
- kv_cache_dtype: str,
- k_scale: float,
- v_scale: float,
- tp_rank: int = 0,
- blocksparse_local_blocks: int = 0,
- blocksparse_vert_stride: int = 0,
- blocksparse_block_size: int = 64,
- blocksparse_head_sliding_step: int = 0,
- ) -> None:
- torch.ops._C.paged_attention_v1(
- out, query, key_cache, value_cache, num_kv_heads, scale, block_tables,
- seq_lens, block_size, max_seq_len, alibi_slopes, kv_cache_dtype,
- k_scale, v_scale, tp_rank, blocksparse_local_blocks,
- blocksparse_vert_stride, blocksparse_block_size,
- blocksparse_head_sliding_step)
- def paged_attention_v2(
- out: torch.Tensor,
- exp_sum: torch.Tensor,
- max_logits: torch.Tensor,
- tmp_out: torch.Tensor,
- query: torch.Tensor,
- key_cache: torch.Tensor,
- value_cache: torch.Tensor,
- num_kv_heads: int,
- scale: float,
- block_tables: torch.Tensor,
- seq_lens: torch.Tensor,
- block_size: int,
- max_seq_len: int,
- alibi_slopes: Optional[torch.Tensor],
- kv_cache_dtype: str,
- k_scale: float,
- v_scale: float,
- tp_rank: int = 0,
- blocksparse_local_blocks: int = 0,
- blocksparse_vert_stride: int = 0,
- blocksparse_block_size: int = 64,
- blocksparse_head_sliding_step: int = 0,
- ) -> None:
- torch.ops._C.paged_attention_v2(
- out, exp_sum, max_logits, tmp_out, query, key_cache, value_cache,
- num_kv_heads, scale, block_tables, seq_lens, block_size, max_seq_len,
- alibi_slopes, kv_cache_dtype, k_scale, v_scale, tp_rank,
- blocksparse_local_blocks, blocksparse_vert_stride,
- blocksparse_block_size, blocksparse_head_sliding_step)
- # pos encoding ops
- def rotary_embedding(
- positions: torch.Tensor,
- query: torch.Tensor,
- key: torch.Tensor,
- head_size: int,
- cos_sin_cache: torch.Tensor,
- is_neox: bool,
- ) -> None:
- torch.ops._C.rotary_embedding(positions, query, key, head_size,
- cos_sin_cache, is_neox)
- def batched_rotary_embedding(positions: torch.Tensor, query: torch.Tensor,
- key: torch.Tensor, head_size: int,
- cos_sin_cache: torch.Tensor, is_neox: bool,
- rot_dim: int,
- cos_sin_cache_offsets: torch.Tensor) -> None:
- torch.ops._C.batched_rotary_embedding(positions, query, key, head_size,
- cos_sin_cache, is_neox, rot_dim,
- cos_sin_cache_offsets)
- # layer norm ops
- def rms_norm(out: torch.Tensor, input: torch.Tensor, weight: torch.Tensor,
- epsilon: float) -> None:
- torch.ops._C.rms_norm(out, input, weight, epsilon)
- def fused_add_rms_norm(input: torch.Tensor, residual: torch.Tensor,
- weight: torch.Tensor, epsilon: float) -> None:
- torch.ops._C.fused_add_rms_norm(input, residual, weight, epsilon)
- def advance_step(num_seqs: int, num_queries: int, block_size: int,
- input_tokens: torch.Tensor, sampled_token_ids: torch.Tensor,
- input_positions: torch.Tensor, seq_lens: torch.Tensor,
- slot_mapping: torch.Tensor,
- block_tables: torch.Tensor) -> None:
- """Advance a step on GPU for existing inputs for a multi-step runner"""
- return torch.ops._C.advance_step(num_seqs, num_queries, block_size,
- input_tokens, sampled_token_ids,
- input_positions, seq_lens, slot_mapping,
- block_tables)
- # quantization ops
- # awq
- def awq_dequantize(qweight: torch.Tensor, scales: torch.Tensor,
- zeros: torch.Tensor, split_k_iters: int, thx: int,
- thy: int) -> torch.Tensor:
- return torch.ops._C.awq_dequantize(qweight, scales, zeros, split_k_iters,
- thx, thy)
- def awq_gemm(input: torch.Tensor, qweight: torch.Tensor, qzeros: torch.Tensor,
- scales: torch.Tensor, split_k_iters: int) -> torch.Tensor:
- return torch.ops._C.awq_gemm(input, qweight, qzeros, scales, split_k_iters)
- # gptq
- def gptq_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
- b_gptq_qzeros: torch.Tensor, b_gptq_scales: torch.Tensor,
- b_g_idx: torch.Tensor, use_exllama: bool,
- bit: int) -> torch.Tensor:
- return torch.ops._C.gptq_gemm(a, b_q_weight, b_gptq_qzeros, b_gptq_scales,
- b_g_idx, use_exllama, bit)
- def gptq_shuffle(q_weight: torch.Tensor, q_perm: torch.Tensor,
- bit: int) -> None:
- torch.ops._C.gptq_shuffle(q_weight, q_perm, bit)
- # squeezellm
- def squeezellm_gemm(vec: torch.Tensor, mat: torch.Tensor, mul: torch.Tensor,
- lookup_table: torch.Tensor) -> None:
- torch.ops._C.squeezellm_gemm(vec, mat, mul, lookup_table)
- # marlin
- def marlin_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
- b_scales: torch.Tensor, workspace: torch.Tensor, size_m: int,
- size_n: int, size_k: int) -> torch.Tensor:
- return torch.ops._C.marlin_gemm(a, b_q_weight, b_scales, workspace, size_m,
- size_n, size_k)
- # marlin_24
- def gptq_marlin_24_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
- b_meta: torch.Tensor, b_scales: torch.Tensor,
- workspace: torch.Tensor, b_q_type: ScalarType,
- size_m: int, size_n: int, size_k: int) -> torch.Tensor:
- return torch.ops._C.gptq_marlin_24_gemm(a, b_q_weight, b_meta, b_scales,
- workspace, b_q_type, size_m,
- size_n, size_k)
- # fp8 marlin
- def fp8_marlin_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
- b_scales: torch.Tensor, workspace: torch.Tensor,
- num_bits: int, size_m: int, size_n: int,
- size_k: int) -> torch.Tensor:
- return torch.ops._C.fp8_marlin_gemm(a, b_q_weight, b_scales, workspace,
- num_bits, size_m, size_n, size_k)
- # cutlass
- def cutlass_scaled_mm_supports_fp8(cuda_device_capability: int) -> bool:
- return torch.ops._C.cutlass_scaled_mm_supports_fp8(cuda_device_capability)
- def cutlass_scaled_mm(a: torch.Tensor,
- b: torch.Tensor,
- scale_a: torch.Tensor,
- scale_b: torch.Tensor,
- out_dtype: Type[torch.dtype],
- bias: Optional[torch.Tensor] = None) -> torch.Tensor:
- assert (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0)
- assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
- assert bias is None or bias.shape[0] == b.shape[
- 1] and bias.dtype == out_dtype
- m = a.shape[0]
- n = b.shape[1]
- out = torch.empty((m, n), dtype=out_dtype, device=a.device)
- torch.ops._C.cutlass_scaled_mm(out, a, b, scale_a, scale_b, bias)
- return out
- def cutlass_scaled_mm_azp(a: torch.Tensor,
- b: torch.Tensor,
- scale_a: torch.Tensor,
- scale_b: torch.Tensor,
- out_dtype: torch.dtype,
- azp_adj: torch.Tensor,
- azp: Optional[torch.Tensor] = None,
- bias: Optional[torch.Tensor] = None) -> torch.Tensor:
- assert (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0)
- assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
- assert bias is None or bias.numel(
- ) == b.shape[1] and bias.dtype == out_dtype
- m = a.shape[0]
- n = b.shape[1]
- out = torch.empty((m, n), dtype=out_dtype, device=a.device)
- torch.ops._C.cutlass_scaled_mm_azp(out, a, b, scale_a, scale_b, azp_adj,
- azp, bias)
- return out
- # aqlm
- def aqlm_gemm(input: torch.Tensor, codes: torch.Tensor,
- codebooks: torch.Tensor, scales: torch.Tensor,
- codebook_partition_sizes: List[int],
- bias: Optional[torch.Tensor]) -> torch.Tensor:
- return torch.ops._C.aqlm_gemm(input, codes, codebooks, scales,
- codebook_partition_sizes, bias)
- def aqlm_dequant(codes: torch.Tensor, codebooks: torch.Tensor,
- codebook_partition_sizes: List[int]) -> torch.Tensor:
- return torch.ops._C.aqlm_dequant(codes, codebooks,
- codebook_partition_sizes)
- # gptq_marlin
- def gptq_marlin_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
- size_k: int, size_n: int,
- num_bits: int) -> torch.Tensor:
- return torch.ops._C.gptq_marlin_repack(b_q_weight, perm, size_k, size_n,
- num_bits)
- def awq_marlin_repack(b_q_weight: torch.Tensor, size_k: int, size_n: int,
- num_bits: int) -> torch.Tensor:
- return torch.ops._C.awq_marlin_repack(b_q_weight, size_k, size_n, num_bits)
- def gptq_marlin_gemm(a: torch.Tensor,
- b_q_weight: torch.Tensor,
- b_scales: torch.Tensor,
- b_zeros: torch.Tensor,
- g_idx: torch.Tensor,
- perm: torch.Tensor,
- workspace: torch.Tensor,
- b_q_type: ScalarType,
- size_m: int,
- size_n: int,
- size_k: int,
- is_k_full: bool,
- has_zp: bool = False,
- use_fp32_reduce: bool = False,
- is_zp_float: bool = False) -> torch.Tensor:
- return torch.ops._C.gptq_marlin_gemm(a, b_q_weight, b_scales, b_zeros,
- g_idx, perm, workspace, b_q_type,
- size_m, size_n, size_k, is_k_full,
- has_zp, use_fp32_reduce,
- is_zp_float)
- # machete
- def machete_supported_schedules(b_type: ScalarType) -> List[str]:
- return torch.ops._C.machete_supported_schedules(b_type)
- def machete_gemm(
- a: torch.Tensor,
- b_q: torch.Tensor, # Should be the tensor returned by machete_prepack_B
- b_type: ScalarType,
- b_scales: Optional[torch.Tensor] = None,
- b_zeros: Optional[torch.Tensor] = None,
- b_group_size: Optional[int] = None,
- c: Optional[torch.Tensor] = None,
- alpha: Optional[float] = None,
- beta: Optional[float] = None,
- schedule: Optional[str] = None,
- ) -> torch.Tensor:
- return torch.ops._C.machete_gemm(a, b_q, b_type, b_scales, b_zeros,
- b_group_size, c, alpha, beta, schedule)
- def machete_prepack_B(b_q_weight: torch.Tensor,
- b_type: ScalarType) -> torch.Tensor:
- return torch.ops._C.machete_prepack_B(b_q_weight, b_type)
- def permute_cols(a: torch.Tensor, perm: torch.Tensor) -> torch.Tensor:
- return torch.ops._C.permute_cols(a, perm)
- # fp8
- def scaled_fp8_quant(
- input: torch.Tensor,
- scale: Optional[torch.Tensor] = None,
- num_token_padding: Optional[int] = None,
- scale_ub: Optional[torch.Tensor] = None,
- use_per_token_if_dynamic: bool = False,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """
- Quantize input tensor to FP8 and return quantized tensor and scale.
- This function supports both static and dynamic quantization: If you
- provide the scale, it will use static scaling and if you omit it,
- the scale will be determined dynamically. The function also allows
- optional padding of the output tensors for downstream kernels that
- will benefit from padding.
- Args:
- input: The input tensor to be quantized to FP8
- scale: Optional scaling factor for the FP8 quantization
- num_token_padding: If specified, pad the first dimension
- of the output to at least this value.
- use_per_token_if_dynamic: Whether to do per_tensor or per_token
- in the dynamic quantization case.
- Returns:
- Tuple[torch.Tensor, torch.Tensor]: The output tensor in FP8 and
- scaling factor.
- """
- # This code assumes batch_dim and num_tokens are flattened
- assert (input.ndim == 2)
- shape = input.shape
- # For rocm, the output fp8 dtype is torch.float_e3m3fnuz
- out_dtype: torch.dtype = torch.float8_e4m3fnuz if \
- is_hip() else torch.float8_e4m3fn
- if num_token_padding:
- shape = (max(num_token_padding, input.shape[0]), shape[1])
- output = torch.empty(shape, device=input.device, dtype=out_dtype)
- if scale is None:
- if use_per_token_if_dynamic:
- scale = torch.empty((shape[0], 1),
- device=input.device,
- dtype=torch.float32)
- torch.ops._C.dynamic_per_token_scaled_fp8_quant(
- output, input, scale, scale_ub)
- else:
- scale = torch.zeros(1, device=input.device, dtype=torch.float32)
- torch.ops._C.dynamic_scaled_fp8_quant(output, input, scale)
- else:
- # num_token_padding not implemented for this case
- assert (scale.numel() == 1 or num_token_padding is None)
- torch.ops._C.static_scaled_fp8_quant(output, input, scale)
- return output, scale
- # int8
- def scaled_int8_quant(
- input: torch.Tensor,
- scale: Optional[torch.Tensor] = None
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """
- Quantize the input tensor to int8 and return the quantized tensor and scale.
- Args:
- input: The input tensor to be quantized to int8.
- scale: Optional scaling factor for the int8 quantization.
- When not provided, we invoke dynamic-per-token quantization.
- Returns:
- Tuple[Torch.Tensor, Torch.Tensor] : Output int8 tensor and scales.
- """
- output = torch.empty_like(input, dtype=torch.int8)
- if scale is not None:
- # static-per-tensor quantization.
- torch.ops._C.static_scaled_int8_quant(output, input, scale)
- return output, scale
- # dynamic-per-token quantization.
- input_scales = torch.empty((input.numel() // input.shape[-1], 1),
- device=input.device,
- dtype=torch.float32)
- torch.ops._C.dynamic_scaled_int8_quant(output, input, input_scales)
- return output, input_scales
- # quip#
- def quip_gemv(
- A: torch.Tensor,
- B: torch.Tensor,
- CB: torch.Tensor,
- ) -> torch.Tensor:
- return torch.ops._C.quip_gemv(A, B, CB)
- def quip_decompress(
- YIs: torch.Tensor,
- CB: torch.Tensor,
- Y: torch.Tensor,
- ) -> torch.Tensor:
- return torch.ops._C.quip_decompress(YIs, CB, Y)
- # qqq ops
- def marlin_qqq_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
- s_tok: torch.Tensor, s_ch: torch.Tensor,
- s_group: torch.Tensor, workspace: torch.Tensor,
- size_m: int, size_n: int, size_k: int) -> torch.Tensor:
- return torch.ops._C.marlin_qqq_gemm(a, b_q_weight, s_tok, s_ch, s_group,
- workspace, size_m, size_n, size_k)
- # gguf
- def ggml_dequantize(W: torch.Tensor, quant_type: int, m: int,
- n: int) -> torch.Tensor:
- return torch.ops._C.ggml_dequantize(W, quant_type, m, n)
- def ggml_mul_mat_vec_a8(
- W: torch.Tensor,
- X: torch.Tensor,
- quant_type: int,
- row: int,
- ) -> torch.Tensor:
- return torch.ops._C.ggml_mul_mat_vec_a8(W, X, quant_type, row)
- def ggml_mul_mat_a8(
- W: torch.Tensor,
- X: torch.Tensor,
- quant_type: int,
- row: int,
- ) -> torch.Tensor:
- return torch.ops._C.ggml_mul_mat_a8(W, X, quant_type, row)
- # fp6
- def fp_eXmY_linear_forward_cuda(
- EXPONENT: int,
- MANTISSA: int,
- _in_feats: torch.Tensor,
- _weights: torch.Tensor,
- _scales: torch.Tensor,
- splitK: int = 1,
- ) -> torch.Tensor:
- return torch.ops._C.fp_eXmY_linear_forward_cuda(EXPONENT, MANTISSA,
- _in_feats, _weights,
- _scales, splitK)
- # mamba
- def causal_conv1d_fwd(x: torch.Tensor, weight: torch.Tensor,
- bias_: Optional[torch.Tensor],
- seq_idx_: Optional[torch.Tensor],
- initial_states_: Optional[torch.Tensor],
- final_states_out_: Optional[torch.Tensor],
- silu_activation: bool) -> torch.Tensor:
- return torch.ops._C.causal_conv1d_fwd(x, weight, bias_, seq_idx_, None,
- initial_states_, final_states_out_,
- silu_activation)
- def causal_conv1d_update(x: torch.Tensor, conv_state: torch.Tensor,
- weight: torch.Tensor, bias_: Optional[torch.Tensor],
- silu_activation: bool) -> torch.Tensor:
- return torch.ops._C.causal_conv1d_update(x, conv_state, weight, bias_,
- silu_activation)
- def selective_scan_fwd(u: torch.Tensor, delta: torch.Tensor, A: torch.Tensor,
- B: torch.Tensor, C: torch.Tensor,
- D_: Optional[torch.Tensor], z_: Optional[torch.Tensor],
- delta_bias_: Optional[torch.Tensor],
- delta_softplus: bool, index_: Optional[torch.Tensor],
- x: Optional[torch.Tensor]) -> List[torch.Tensor]:
- return torch.ops._C.selective_scan_fwd(u, delta, A, B, C, D_, z_,
- delta_bias_, delta_softplus, index_,
- x)
- # moe
- def moe_align_block_size(topk_ids: torch.Tensor, num_experts: int,
- block_size: int, sorted_token_ids: torch.Tensor,
- experts_ids: torch.Tensor,
- num_tokens_post_pad: torch.Tensor) -> None:
- torch.ops._C.moe_align_block_size(topk_ids, num_experts, block_size,
- sorted_token_ids, experts_ids,
- num_tokens_post_pad)
- def topk_softmax(topk_weights: torch.Tensor, topk_ids: torch.Tensor,
- token_expert_indicies: torch.Tensor,
- gating_output: float) -> None:
- torch.ops._moe_C.topk_softmax(topk_weights, topk_ids,
- token_expert_indicies, gating_output)
- def reshape_and_cache(
- key: torch.Tensor,
- value: torch.Tensor,
- key_cache: torch.Tensor,
- value_cache: torch.Tensor,
- slot_mapping: torch.Tensor,
- kv_cache_dtype: str,
- k_scale: float,
- v_scale: float,
- ) -> None:
- torch.ops._C_cache_ops.reshape_and_cache(key, value, key_cache,
- value_cache, slot_mapping,
- kv_cache_dtype, k_scale, v_scale)
- def reshape_and_cache_flash(
- key: torch.Tensor,
- value: torch.Tensor,
- key_cache: torch.Tensor,
- value_cache: torch.Tensor,
- slot_mapping: torch.Tensor,
- kv_cache_dtype: str,
- k_scale: float,
- v_scale: float,
- ) -> None:
- torch.ops._C_cache_ops.reshape_and_cache_flash(key, value, key_cache,
- value_cache, slot_mapping,
- kv_cache_dtype, k_scale,
- v_scale)
- def copy_blocks(key_caches: List[torch.Tensor],
- value_caches: List[torch.Tensor],
- block_mapping: torch.Tensor) -> None:
- torch.ops._C_cache_ops.copy_blocks(key_caches, value_caches, block_mapping)
- def swap_blocks(src: torch.Tensor, dst: torch.Tensor,
- block_mapping: torch.Tensor) -> None:
- torch.ops._C_cache_ops.swap_blocks(src, dst, block_mapping)
- def convert_fp8(output: torch.Tensor,
- input: torch.Tensor,
- scale: float = 1.0,
- kv_dtype: str = "fp8") -> None:
- torch.ops._C_cache_ops.convert_fp8(output, input, scale, kv_dtype)
- def get_device_attribute(attribute: int, device: int) -> int:
- return torch.ops._C_cuda_utils.get_device_attribute(attribute, device)
- def get_max_shared_memory_per_block_device_attribute(device: int) -> int:
- # ruff: noqa: E501
- return torch.ops._C_cuda_utils.get_max_shared_memory_per_block_device_attribute(
- device)
- # custom ar
- def init_custom_ar(meta: torch.Tensor, rank_data: torch.Tensor,
- handles: List[str], offsets: List[int], rank: int,
- full_nvlink: bool) -> int:
- return torch.ops._C_custom_ar.init_custom_ar(meta, rank_data, handles,
- offsets, rank, full_nvlink)
- def should_custom_ar(inp: torch.Tensor, max_size: int, world_size: int,
- full_nvlink: bool) -> bool:
- return torch.ops._C_custom_ar.should_custom_ar(inp, max_size, world_size,
- full_nvlink)
- def all_reduce_reg(fa: int, inp: torch.Tensor, out: torch.Tensor) -> None:
- torch.ops._C_custom_ar.all_reduce_reg(fa, inp, out)
- def all_reduce_unreg(fa: int, inp: torch.Tensor, reg_buffer: torch.Tensor,
- out: torch.Tensor) -> None:
- torch.ops._C_custom_ar.all_reduce_unreg(fa, inp, reg_buffer, out)
- def dispose(fa: int) -> None:
- torch.ops._C_custom_ar.dispose(fa)
- def meta_size() -> int:
- return torch.ops._C_custom_ar.meta_size()
- def register_buffer(fa: int, t: torch.Tensor, handles: List[str],
- offsets: List[int]) -> None:
- return torch.ops._C_custom_ar.register_buffer(fa, t, handles, offsets)
- def get_graph_buffer_ipc_meta(fa: int) -> Tuple[List[str], List[int]]:
- return torch.ops._C_custom_ar.get_graph_buffer_ipc_meta(fa)
- def register_graph_buffers(fa: int, handles: List[str],
- offsets: List[List[int]]) -> None:
- torch.ops._C_custom_ar.register_graph_buffers(fa, handles, offsets)
- # Sampling Kernels
- def sampling_from_probs(probs: torch.Tensor,
- uniform_samplers: torch.Tensor,
- deterministic: bool = True,
- check_nan: bool = False) -> torch.Tensor:
- if check_nan and torch.any(torch.isnan(probs)):
- raise ValueError("NaN detected in probs")
- return torch.ops._C.sampling_from_probs(probs, uniform_samplers,
- deterministic)
- def _to_tensor_scalar_tuple(x):
- if isinstance(x, torch.Tensor):
- return (x, 0)
- else:
- return (None, x)
- def top_p_sampling_from_probs(
- probs: torch.Tensor,
- uniform_samples: torch.Tensor,
- top_p: Union[torch.Tensor, float],
- deterministic: bool = True,
- check_nan: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
- if check_nan and torch.any(torch.isnan(probs)):
- raise ValueError("NaN detected in probs")
- return torch.ops._C.top_p_sampling_from_probs(
- probs, uniform_samples, *_to_tensor_scalar_tuple(top_p), deterministic)
- def top_k_sampling_from_probs(
- probs: torch.Tensor,
- uniform_samples: torch.Tensor,
- top_k: Union[torch.Tensor, int],
- deterministic: bool = True,
- check_nan: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
- if check_nan and torch.any(torch.isnan(probs)):
- raise ValueError("NaN detected in probs")
- return torch.ops._C.top_k_sampling_from_probs(
- probs, uniform_samples, *_to_tensor_scalar_tuple(top_k), deterministic)
- def min_p_sampling_from_probs(
- probs: torch.Tensor,
- uniform_samples: torch.Tensor,
- min_p: Union[torch.Tensor, float],
- deterministic: bool = True,
- check_nan: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
- if check_nan and torch.any(torch.isnan(probs)):
- raise ValueError("NaN detected in probs")
- return torch.ops._C.min_p_sampling_from_probs(
- probs, uniform_samples, *_to_tensor_scalar_tuple(min_p), deterministic)
- def top_k_mask_logits(
- logits: torch.Tensor,
- top_k: Union[torch.Tensor, int],
- ) -> torch.Tensor:
- return torch.ops._C.top_k_mask_logits(logits,
- *_to_tensor_scalar_tuple(top_k))
- def top_p_renorm_prob(
- probs: torch.Tensor,
- top_p: Union[torch.Tensor, float],
- ) -> torch.Tensor:
- return torch.ops._C.top_p_renorm_prob(probs,
- *_to_tensor_scalar_tuple(top_p))
- def top_k_renorm_prob(
- probs: torch.Tensor,
- top_k: Union[torch.Tensor, int],
- ) -> torch.Tensor:
- return torch.ops._C.top_k_renorm_prob(probs,
- *_to_tensor_scalar_tuple(top_k))
- def top_k_top_p_sampling_from_logits(
- probs: torch.Tensor,
- uniform_samples: torch.Tensor,
- top_k: Union[torch.Tensor, int],
- top_p: Union[torch.Tensor, float],
- filter_apply_order: str = "top_k_first",
- deterministic: bool = True,
- check_nan: bool = False,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- if filter_apply_order == "top_k_first":
- masked_logits = top_k_mask_logits(probs, top_k)
- probs = torch.softmax(masked_logits, dim=-1)
- return top_p_sampling_from_probs(probs, uniform_samples, top_p,
- deterministic, check_nan)
- elif filter_apply_order == "joint":
- probs = torch.softmax(probs, dim=-1)
- if check_nan and torch.any(torch.isnan(probs)):
- raise ValueError("NaN detected in probs")
- return torch.ops._C.top_k_top_p_sampling_from_logits(
- probs, uniform_samples, *_to_tensor_scalar_tuple(top_k),
- *_to_tensor_scalar_tuple(top_p), deterministic)
- else:
- raise ValueError(f"Invalid filter_apply_order: {filter_apply_order}")
- def top_k_top_p_sampling_from_probs(
- probs: torch.Tensor,
- uniform_samples: torch.Tensor,
- top_k: Union[torch.Tensor, int],
- top_p: Union[torch.Tensor, float],
- filter_apply_order: str = "top_k_first",
- deterministic: bool = True,
- check_nan: bool = False,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- if filter_apply_order == "top_k_first":
- renorm_probs = top_k_renorm_prob(probs, top_k)
- return top_p_sampling_from_probs(renorm_probs, uniform_samples, top_p,
- deterministic, check_nan)
- elif filter_apply_order == "joint":
- if check_nan and torch.any(torch.isnan(probs)):
- raise ValueError("NaN detected in probs")
- return torch.ops._C.top_k_top_p_sampling_from_probs(
- probs, uniform_samples, *_to_tensor_scalar_tuple(top_k),
- *_to_tensor_scalar_tuple(top_p), deterministic)
- else:
- raise ValueError(f"Invalid filter_apply_order: {filter_apply_order}")
- # hadamard
- # def fast_hadamard_transform(x: torch.Tensor, scale: float) -> torch.Tensor:
- # return torch.ops._C_hadamard.fast_hadamard_transform(x, scale)
- # def fast_hadamard_transform_12N(x: torch.Tensor, scale: float) -> torch.Tensor:
- # return torch.ops._C_hadamard.fast_hadamard_transform_12N(x, scale)
- # def fast_hadamard_transform_20N(x: torch.Tensor, scale: float) -> torch.Tensor:
- # return torch.ops._C_hadamard.fast_hadamard_transform_20N(x, scale)
- # def fast_hadamard_transform_28N(x: torch.Tensor, scale: float) -> torch.Tensor:
- # return torch.ops._C_hadamard.fast_hadamard_transform_28N(x, scale)
- # TODO: remove this later
- names_and_values = globals()
- names_and_values_to_update = {}
- # prepare variables to avoid dict size change during iteration
- k, v, arg = None, None, None
- fn_type = type(lambda x: x)
- for k, v in names_and_values.items():
- # find functions that are defined in this file and have torch.Tensor
- # in their annotations. `arg == "torch.Tensor"` is used to handle
- # the case when users use `import __annotations__` to turn type
- # hints into strings.
- if isinstance(v, fn_type) \
- and v.__code__.co_filename == __file__ \
- and any(arg is torch.Tensor or arg == "torch.Tensor"
- for arg in v.__annotations__.values()):
- names_and_values_to_update[k] = hint_on_error(v)
- names_and_values.update(names_and_values_to_update)
- del names_and_values_to_update, names_and_values, v, k, fn_type
|