123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- from typing import List, Optional, Tuple, Union
- import msgspec
- from aphrodite.common.config import ParallelConfig
- from aphrodite.common.sequence import ExecuteModelRequest, IntermediateTensors
- from aphrodite.common.utils import get_ip, is_hip, is_xpu
- from aphrodite.executor.msgspec_utils import decode_hook, encode_hook
- from aphrodite.platforms import current_platform
- from aphrodite.task_handler.worker_base import WorkerWrapperBase
- try:
- import ray
- class RayWorkerWrapper(WorkerWrapperBase):
- """Ray wrapper for aphrodite.task_handler.Worker, allowing Worker to be
- lazliy initialized after Ray sets CUDA_VISIBLE_DEVICES."""
- def __init__(self, *args, **kwargs) -> None:
- super().__init__(*args, **kwargs)
- # Since the compiled DAG runs a main execution
- # in a different thread that calls cuda.set_device.
- # The flag indicates is set_device is called on
- # that thread.
- self.compiled_dag_cuda_device_set = False
- self.input_decoder = msgspec.msgpack.Decoder(ExecuteModelRequest,
- dec_hook=decode_hook)
- self.output_encoder = msgspec.msgpack.Encoder(enc_hook=encode_hook)
- def get_node_ip(self) -> str:
- return get_ip()
- def get_node_and_gpu_ids(self) -> Tuple[str, List[int]]:
- node_id = ray.get_runtime_context().get_node_id()
- gpu_ids = ray.get_gpu_ids()
- return node_id, gpu_ids
- def execute_model_spmd(
- self, req_or_tuple: Union[bytes,
- Tuple[bytes,
- Optional[IntermediateTensors]]]
- ) -> bytes:
- """Execute model in SPMD fashion: used only when SPMD worker and
- compiled DAG are both enabled.
- Args:
- req_or_tuple: A request or a tuple containing the
- request and intermediate tensors. Intermediate tensors are
- None unless if it is provided because it is > 0 pipeline
- stage. The request is serialized by msgspec.
- """
- if isinstance(req_or_tuple, bytes):
- serialized_req, intermediate_tensors = req_or_tuple, None
- else:
- serialized_req, intermediate_tensors = req_or_tuple
- execute_model_req = self.input_decoder.decode(serialized_req)
- # TODO: This is needed right now because Ray DAG executes
- # on a background thread, so we need to reset torch's current
- # device.
- import torch
- if not self.compiled_dag_cuda_device_set:
- torch.cuda.set_device(self.worker.device)
- self.compiled_dag_cuda_device_set = True
- output = self.worker._execute_model_spmd(execute_model_req,
- intermediate_tensors)
- # Pipeline model request and output to the next pipeline stage
- if isinstance(output, IntermediateTensors):
- output = serialized_req, output
- else:
- output = self.output_encoder.encode(output)
- return output
- ray_import_err = None
- except ImportError as e:
- ray = None # type: ignore
- ray_import_err = e
- RayWorkerWrapper = None # type: ignore
- def ray_is_available() -> bool:
- """Returns True if Ray is available."""
- return ray is not None
- def assert_ray_available():
- """Raise an exception if Ray is not available."""
- if ray is None:
- raise ValueError("Failed to import Ray, please install Ray with "
- "`pip install ray`.") from ray_import_err
- def initialize_ray_cluster(
- parallel_config: ParallelConfig,
- ray_address: Optional[str] = None,
- ):
- """Initialize the distributed cluster with Ray.
- it will connect to the Ray cluster and create a placement group
- for the workers, which includes the specification of the resources
- for each distributed worker.
- Args:
- parallel_config: The configurations for parallel execution.
- ray_address: The address of the Ray cluster. If None, uses
- the default Ray cluster address.
- """
- assert_ray_available()
- # Connect to a ray cluster.
- if is_hip() or is_xpu():
- ray.init(address=ray_address,
- ignore_reinit_error=True,
- num_gpus=parallel_config.world_size)
- else:
- ray.init(address=ray_address, ignore_reinit_error=True)
- if parallel_config.placement_group:
- # Placement group is already set.
- return
- device_str = "GPU" if not current_platform.is_tpu() else "TPU"
- # Create placement group for worker processes
- current_placement_group = ray.util.get_current_placement_group()
- if current_placement_group:
- # We are in a placement group
- bundles = current_placement_group.bundle_specs
- # Verify that we can use the placement group.
- device_bundles = 0
- for bundle in bundles:
- bundle_devices = bundle.get(device_str, 0)
- if bundle_devices > 1:
- raise ValueError(
- "Placement group bundle cannot have more than 1 "
- f"{device_str}.")
- if bundle_devices:
- device_bundles += 1
- if parallel_config.world_size > device_bundles:
- raise ValueError(
- f"The number of required {device_str}s exceeds the total "
- f"number of available {device_str}s in the placement group."
- f"Required number of devices: {parallel_config.world_size}. "
- f"Total number of devices: {device_bundles}.")
- else:
- num_devices_in_cluster = ray.cluster_resources().get(device_str, 0)
- if parallel_config.world_size > num_devices_in_cluster:
- raise ValueError(
- f"The number of required {device_str}s exceeds the total "
- f"number of available {device_str}s in the placement group.")
- # Create a new placement group
- placement_group_specs = ([{
- device_str: 1
- }] * parallel_config.world_size)
- current_placement_group = ray.util.placement_group(
- placement_group_specs)
- # Wait until PG is ready - this will block until all
- # requested resources are available, and will timeout
- # if they cannot be provisioned.
- ray.get(current_placement_group.ready(), timeout=1800)
- # Set the placement group in the parallel config
- parallel_config.placement_group = current_placement_group
|