123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283 |
- """Benchmark the latency of processing a single batch of requests."""
- import argparse
- import json
- import time
- from pathlib import Path
- from typing import List, Optional
- import numpy as np
- import torch
- from tqdm import tqdm
- from aphrodite import LLM, SamplingParams
- from aphrodite.common.utils import FlexibleArgumentParser
- from aphrodite.engine.args_tools import EngineArgs
- from aphrodite.inputs import PromptStrictInputs
- from aphrodite.quantization import QUANTIZATION_METHODS
- def main(args: argparse.Namespace):
- print(args)
- # NOTE: If the request cannot be processed in a single batch,
- # the engine will automatically process the request in multiple batches.
- llm = LLM(
- model=args.model,
- speculative_model=args.speculative_model,
- num_speculative_tokens=args.num_speculative_tokens,
- speculative_draft_tensor_parallel_size=\
- args.speculative_draft_tensor_parallel_size,
- ngram_prompt_lookup_max=args.ngram_prompt_lookup_max,
- ngram_prompt_lookup_min=args.ngram_prompt_lookup_min,
- tokenizer=args.tokenizer,
- quantization=args.quantization,
- tensor_parallel_size=args.tensor_parallel_size,
- trust_remote_code=args.trust_remote_code,
- dtype=args.dtype,
- max_model_len=args.max_model_len,
- enforce_eager=args.enforce_eager,
- kv_cache_dtype=args.kv_cache_dtype,
- quantization_param_path=args.quantization_param_path,
- device=args.device,
- ray_workers_use_nsight=args.ray_workers_use_nsight,
- use_v2_block_manager=args.use_v2_block_manager,
- enable_chunked_prefill=args.enable_chunked_prefill,
- download_dir=args.download_dir,
- block_size=args.block_size,
- gpu_memory_utilization=args.gpu_memory_utilization,
- load_format=args.load_format,
- distributed_executor_backend=args.distributed_executor_backend,
- enable_prefix_caching=args.enable_prefix_caching,
- )
- sampling_params = SamplingParams(
- n=args.n,
- temperature=0.0 if args.use_beam_search else 1.0,
- top_p=1.0,
- use_beam_search=args.use_beam_search,
- ignore_eos=True,
- max_tokens=args.output_len,
- )
- print(sampling_params)
- dummy_prompt_token_ids = np.random.randint(10000,
- size=(args.batch_size,
- args.input_len))
- dummy_inputs: List[PromptStrictInputs] = [{
- "prompt_token_ids": batch
- } for batch in dummy_prompt_token_ids.tolist()]
- def run_to_completion(profile_dir: Optional[str] = None):
- if profile_dir:
- with torch.profiler.profile(
- activities=[
- torch.profiler.ProfilerActivity.CPU,
- torch.profiler.ProfilerActivity.CUDA,
- ],
- on_trace_ready=torch.profiler.tensorboard_trace_handler(
- str(profile_dir))) as p:
- llm.generate(dummy_inputs,
- sampling_params=sampling_params,
- use_tqdm=False)
- print(p.key_averages())
- else:
- start_time = time.perf_counter()
- llm.generate(dummy_inputs,
- sampling_params=sampling_params,
- use_tqdm=False)
- end_time = time.perf_counter()
- latency = end_time - start_time
- return latency
- print("Warming up...")
- for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
- run_to_completion(profile_dir=None)
- if args.profile:
- profile_dir = args.profile_result_dir
- if not profile_dir:
- profile_dir = Path(
- "."
- ) / "aphrodite_benchmark_result" / f"latency_result_{time.time()}"
- print(f"Profiling (results will be saved to '{profile_dir}')...")
- run_to_completion(profile_dir=profile_dir)
- return
- # Benchmark.
- latencies = []
- for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
- latencies.append(run_to_completion(profile_dir=None))
- latencies = np.array(latencies)
- percentages = [10, 25, 50, 75, 90, 99]
- percentiles = np.percentile(latencies, percentages)
- print(f'Avg latency: {np.mean(latencies)} seconds')
- for percentage, percentile in zip(percentages, percentiles):
- print(f'{percentage}% percentile latency: {percentile} seconds')
- # Output JSON results if specified
- if args.output_json:
- results = {
- "avg_latency": np.mean(latencies),
- "latencies": latencies.tolist(),
- "percentiles": dict(zip(percentages, percentiles.tolist())),
- }
- with open(args.output_json, "w") as f:
- json.dump(results, f, indent=4)
- if __name__ == '__main__':
- parser = FlexibleArgumentParser(
- description='Benchmark the latency of processing a single batch of '
- 'requests till completion.')
- parser.add_argument('--model', type=str, default='facebook/opt-125m')
- parser.add_argument('--speculative-model', type=str, default=None)
- parser.add_argument('--num-speculative-tokens', type=int, default=None)
- parser.add_argument('--speculative-draft-tensor-parallel-size',
- '-spec-draft-tp',
- type=int,
- default=None)
- parser.add_argument('--ngram-prompt-lookup-max', type=int, default=None)
- parser.add_argument('--ngram-prompt-lookup-min', type=int, default=None)
- parser.add_argument('--tokenizer', type=str, default=None)
- parser.add_argument('--quantization',
- '-q',
- choices=[*QUANTIZATION_METHODS, None],
- default=None)
- parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
- parser.add_argument('--input-len', type=int, default=32)
- parser.add_argument('--output-len', type=int, default=128)
- parser.add_argument('--batch-size', type=int, default=8)
- parser.add_argument('--n',
- type=int,
- default=1,
- help='Number of generated sequences per prompt.')
- parser.add_argument('--use-beam-search', action='store_true')
- parser.add_argument('--num-iters-warmup',
- type=int,
- default=10,
- help='Number of iterations to run for warmup.')
- parser.add_argument('--num-iters',
- type=int,
- default=30,
- help='Number of iterations to run.')
- parser.add_argument('--trust-remote-code',
- action='store_true',
- help='trust remote code from huggingface')
- parser.add_argument(
- '--max-model-len',
- type=int,
- default=None,
- help='Maximum length of a sequence (including prompt and output). '
- 'If None, will be derived from the model.')
- parser.add_argument(
- '--dtype',
- type=str,
- default='auto',
- choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
- help='data type for model weights and activations. '
- 'The "auto" option will use FP16 precision '
- 'for FP32 and FP16 models, and BF16 precision '
- 'for BF16 models.')
- parser.add_argument('--enforce-eager',
- action='store_true',
- help='enforce eager mode and disable CUDA graph')
- parser.add_argument(
- '--kv-cache-dtype',
- type=str,
- choices=['auto', 'fp8', 'fp8_e5m2', 'fp8_e4m3'],
- default="auto",
- help='Data type for kv cache storage. If "auto", will use model '
- 'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. '
- 'ROCm (AMD GPU) supports fp8 (=fp8_e4m3)')
- parser.add_argument(
- '--quantization-param-path',
- type=str,
- default=None,
- help='Path to the JSON file containing the KV cache scaling factors. '
- 'This should generally be supplied, when KV cache dtype is FP8. '
- 'Otherwise, KV cache scaling factors default to 1.0, which may cause '
- 'accuracy issues. FP8_E5M2 (without scaling) is only supported on '
- 'cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is '
- 'instead supported for common inference criteria.')
- parser.add_argument(
- '--profile',
- action='store_true',
- help='profile the generation process of a single batch')
- parser.add_argument(
- '--profile-result-dir',
- type=str,
- default=None,
- help=('path to save the pytorch profiler output. Can be visualized '
- 'with ui.perfetto.dev or Tensorboard.'))
- parser.add_argument(
- "--device",
- type=str,
- default="auto",
- choices=["auto", "cuda", "cpu", "openvino", "tpu", "xpu"],
- help='device type for Aphrodite execution, supporting CUDA, OpenVINO '
- 'and CPU.')
- parser.add_argument('--block-size',
- type=int,
- default=16,
- help='block size of key/value cache')
- parser.add_argument(
- '--enable-chunked-prefill',
- action='store_true',
- help='If True, the prefill requests can be chunked based on the '
- 'max_num_batched_tokens')
- parser.add_argument("--enable-prefix-caching",
- action='store_true',
- help="Enable automatic prefix caching")
- parser.add_argument('--use-v2-block-manager', action='store_true')
- parser.add_argument(
- "--ray-workers-use-nsight",
- action='store_true',
- help="If specified, use nsight to profile ray workers",
- )
- parser.add_argument('--download-dir',
- type=str,
- default=None,
- help='directory to download and load the weights, '
- 'default to the default cache dir of huggingface')
- parser.add_argument(
- '--output-json',
- type=str,
- default=None,
- help='Path to save the latency results in JSON format.')
- parser.add_argument('--gpu-memory-utilization',
- type=float,
- default=0.9,
- help='the fraction of GPU memory to be used for '
- 'the model executor, which can range from 0 to 1.'
- 'If unspecified, will use the default value of 0.9.')
- parser.add_argument(
- '--load-format',
- type=str,
- default=EngineArgs.load_format,
- choices=[
- 'auto', 'pt', 'safetensors', 'npcache', 'dummy', 'tensorizer',
- 'bitsandbytes'
- ],
- help='The format of the model weights to load.\n\n'
- '* "auto" will try to load the weights in the safetensors format '
- 'and fall back to the pytorch bin format if safetensors format '
- 'is not available.\n'
- '* "pt" will load the weights in the pytorch bin format.\n'
- '* "safetensors" will load the weights in the safetensors format.\n'
- '* "npcache" will load the weights in pytorch format and store '
- 'a numpy cache to speed up the loading.\n'
- '* "dummy" will initialize the weights with random values, '
- 'which is mainly for profiling.\n'
- '* "tensorizer" will load the weights using tensorizer from '
- 'CoreWeave. See the Tensorize Aphrodite Model script in the Examples'
- 'section for more information.\n'
- '* "bitsandbytes" will load the weights using bitsandbytes '
- 'quantization.\n')
- parser.add_argument(
- '--distributed-executor-backend',
- choices=['ray', 'mp'],
- default=None,
- help='Backend to use for distributed serving. When more than 1 GPU '
- 'is used, will be automatically set to "ray" if installed '
- 'or "mp" (multiprocessing) otherwise.')
- args = parser.parse_args()
- main(args)
|