123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314 |
- from typing import Dict, List, Optional, Tuple, Union
- from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
- from aphrodite.common.sequence import (Logprob, SamplingParams, Sequence,
- SequenceGroup)
- from aphrodite.transformers_utils.tokenizer_group.base_tokenizer_group import \
- BaseTokenizerGroup
- # Used eg. for marking rejected tokens in spec decoding.
- INVALID_TOKEN_ID = -1
- class Detokenizer:
- """Provides methods to decode the output of a model into text."""
- def __init__(self, tokenizer_group: BaseTokenizerGroup):
- self.tokenizer_group = tokenizer_group
- def get_tokenizer_for_seq(self,
- sequence: Sequence) -> "PreTrainedTokenizer":
- """Returns the HF tokenizer to use for a given sequence."""
- return self.tokenizer_group.get_lora_tokenizer(sequence.lora_request)
- def decode_prompt_logprobs_inplace(
- self, seq_group: SequenceGroup,
- prompt_logprobs: List[Optional[Dict[int, Logprob]]]) -> None:
- """Decodes the logprobs for the prompt of a sequence group.
- Args:
- seq_group: The sequence group to decode.
- prompt_logprobs: The logprobs to decode.
-
- Returns:
- The prompt logprobs with the decoded tokens.
- """
- prms = seq_group.sampling_params
- # We can pick any sequence for the prompt.
- seq = next(iter(seq_group.seqs_dict.values()))
- # Only prompt, without the generated token.
- all_token_ids = seq.get_token_ids()
- prompt_token_ids = all_token_ids[:-1]
- tokenizer = self.get_tokenizer_for_seq(seq)
- prefix_offset = 0
- read_offset = 0
- next_iter_prefix_offset = 0
- next_iter_read_offset = 0
- next_iter_tokens = []
- prev_tokens = None
- for token_position, prompt_logprobs_for_token in enumerate(
- prompt_logprobs):
- if not prompt_logprobs_for_token:
- continue
- for token_id, sample_logprob in prompt_logprobs_for_token.items():
- if (sample_logprob.decoded_token is None
- and token_id != INVALID_TOKEN_ID):
- prompt_token_ids_with_token = (
- prompt_token_ids[:token_position] + [token_id])
- (new_tokens, new_text, new_prefix_offset,
- new_read_offset) = detokenize_incrementally(
- tokenizer=tokenizer,
- all_input_ids=prompt_token_ids_with_token,
- prev_tokens=prev_tokens,
- prefix_offset=prefix_offset,
- read_offset=read_offset,
- skip_special_tokens=prms.skip_special_tokens,
- spaces_between_special_tokens=prms.
- spaces_between_special_tokens,
- )
- sample_logprob.decoded_token = new_text
- # Use the offsets & prev tokens corresponding to
- # real tokens to ensure detokenization is consistent
- # actual with prompt.
- if token_id == all_token_ids[token_position]:
- next_iter_prefix_offset = new_prefix_offset
- next_iter_read_offset = new_read_offset
- next_iter_tokens = new_tokens
- # Advance to the next token position.
- prefix_offset = next_iter_prefix_offset
- read_offset = next_iter_read_offset
- if prev_tokens is None:
- prev_tokens = next_iter_tokens
- else:
- prev_tokens.extend(next_iter_tokens)
- def decode_sequence_inplace(self, seq: Sequence,
- prms: SamplingParams) -> int:
- """Decodes the new token for a sequence. In-place operation.
- Args:
- seq: The sequence to decode.
- prms: The sampling parameters used to generate the sequence.
- Returns:
- The number of characters added to the output text.
- """
- all_input_ids = seq.get_token_ids()
- token_id_generated_this_iteration = all_input_ids[-1]
- tokenizer = self.get_tokenizer_for_seq(seq)
- # Convert prompt token IDs to tokens if necessary.
- # Do it here so that we don't have to repeat this
- # computation for each logprob.
- if seq.tokens is None:
- (seq.tokens, seq.prefix_offset,
- seq.read_offset) = convert_prompt_ids_to_tokens(
- tokenizer=tokenizer,
- prompt_ids=all_input_ids[:-1],
- skip_special_tokens=prms.skip_special_tokens,
- )
- (new_tokens, new_decoded_token_text, prefix_offset,
- read_offset) = detokenize_incrementally(
- tokenizer=tokenizer,
- all_input_ids=all_input_ids,
- prev_tokens=seq.tokens,
- prefix_offset=seq.prefix_offset,
- read_offset=seq.read_offset,
- skip_special_tokens=prms.skip_special_tokens,
- spaces_between_special_tokens=prms.spaces_between_special_tokens,
- )
- # Decode logprobs
- logprobs = seq.output_logprobs[-1]
- if logprobs:
- previous_tokens = all_input_ids[:-1]
- for token_id, sample_logprob in logprobs.items():
- # If the token was generated this iteration,
- # use the provided text.
- if token_id == token_id_generated_this_iteration:
- sample_logprob.decoded_token = new_decoded_token_text
- continue
- if (sample_logprob.decoded_token is None
- and token_id != INVALID_TOKEN_ID):
- all_input_ids_with_logprob = previous_tokens + [token_id]
- (_, new_text, _, _) = detokenize_incrementally(
- tokenizer=tokenizer,
- all_input_ids=all_input_ids_with_logprob,
- prev_tokens=seq.tokens,
- prefix_offset=seq.prefix_offset,
- read_offset=seq.read_offset,
- skip_special_tokens=prms.skip_special_tokens,
- spaces_between_special_tokens=prms.
- spaces_between_special_tokens,
- )
- sample_logprob.decoded_token = new_text
- seq.tokens.extend(new_tokens)
- seq.prefix_offset = prefix_offset
- seq.read_offset = read_offset
- seq.output_text += new_decoded_token_text
- return len(new_decoded_token_text)
- def _convert_tokens_to_string_with_added_encoders(
- tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
- output_tokens: List[str],
- skip_special_tokens: bool,
- spaces_between_special_tokens: bool,
- ) -> str:
- # Adapted from
- # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/tokenization_utils.py#L921
- # NOTE(woosuk): The following code is slow because it runs a for loop over
- # the output_tokens. In Python, running a for loop over a list can be slow
- # even when the loop body is very simple.
- sub_texts: List[str] = []
- current_sub_text: List[str] = []
- all_special_tokens = set(tokenizer.all_special_tokens)
- for token in output_tokens:
- if skip_special_tokens and token in all_special_tokens:
- continue
- if token in tokenizer.get_added_vocab():
- if current_sub_text:
- sub_text = tokenizer.convert_tokens_to_string(current_sub_text)
- sub_texts.append(sub_text)
- current_sub_text = []
- sub_texts.append(token)
- else:
- current_sub_text.append(token)
- if current_sub_text:
- sub_text = tokenizer.convert_tokens_to_string(current_sub_text)
- sub_texts.append(sub_text)
- if spaces_between_special_tokens:
- return " ".join(sub_texts)
- else:
- return "".join(sub_texts)
- # 5 is an arbitrary value that should work for all
- # tokenizers (bigger = more conservative).
- INITIAL_INCREMENTAL_DETOKENIZATION_OFFSET = 5
- def convert_prompt_ids_to_tokens(
- tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
- prompt_ids: List[int],
- skip_special_tokens: bool = False,
- ) -> Tuple[List[str], int, int]:
- """Converts the prompt ids to tokens and returns the tokens and offsets
- for incremental detokenization.
- Note that not all tokens are converted to strings. Only the tokens that
- are necessary for incremental detokenization are converted to strings.
- """
- # We do not need to convert the whole prompt to tokens.
- # Offset a little more in case we have special tokens.
- new_tokens = tokenizer.convert_ids_to_tokens(
- prompt_ids[-INITIAL_INCREMENTAL_DETOKENIZATION_OFFSET - 2:],
- skip_special_tokens=skip_special_tokens)
- read_offset = len(new_tokens)
- prefix_offset = max(
- read_offset - INITIAL_INCREMENTAL_DETOKENIZATION_OFFSET, 0)
- return new_tokens, prefix_offset, read_offset
- # Based on
- # https://github.com/huggingface/text-generation-inference/blob/v0.9.4/server/text_generation_server/models/model.py#L62C9-L62C15
- # under Apache 2.0 license
- def detokenize_incrementally(
- tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
- all_input_ids: List[int],
- prev_tokens: Optional[List[str]],
- prefix_offset: int,
- read_offset: int,
- skip_special_tokens: bool = False,
- spaces_between_special_tokens: bool = True,
- ) -> Tuple[List[str], str, int, int]:
- """Detokenizes the input ids incrementally and returns the new tokens
- and the new text.
- If `prev_tokens` is None, this function will convert the input ids to
- tokens and return the tokens and the new text. Otherwise, it will return the
- new tokens and the new text.
- This function will also return the new prefix offset and the new read
- offset to be used in the next iteration.
- The offsets are necessary to defeat cleanup algorithms in the decode which
- decide to add a space or not depending on the surrounding ids.
- Args:
- tokenizer: The tokenizer to use.
- all_input_ids: The input ids. The last id is the new token id.
- prev_tokens: The previous tokens. If None, this function will convert
- the input ids to tokens and return the tokens and the new text.
- prefix_offset: The prefix offset.
- read_offset: The read offset.
- skip_special_tokens: Whether to skip special tokens.
- spaces_between_special_tokens: Whether to add spaces between special
- tokens.
- """
- new_token_id = all_input_ids[-1]
- # This is the first iteration for this sequence
- is_first_iter = prev_tokens is None
- if is_first_iter:
- (prev_tokens, prefix_offset,
- read_offset) = convert_prompt_ids_to_tokens(
- tokenizer,
- all_input_ids[:-1],
- skip_special_tokens=skip_special_tokens)
- assert prev_tokens is not None
- # If the new token id is out of bounds, return an empty string.
- if new_token_id >= len(tokenizer):
- new_tokens = [""]
- else:
- # Put new_token_id in a list so skip_special_tokens is respected
- new_tokens = tokenizer.convert_ids_to_tokens(
- [new_token_id], skip_special_tokens=skip_special_tokens)
- if isinstance(new_tokens, str):
- new_tokens = [new_tokens]
- output_tokens = prev_tokens + new_tokens
- # If this is the first iteration, return all tokens.
- if is_first_iter:
- new_tokens = output_tokens
- # The prefix text is necessary only to defeat cleanup algorithms in
- # the decode which decide to add a space or not depending on the
- # surrounding ids.
- if tokenizer.is_fast or not tokenizer.get_added_vocab():
- prefix_text = tokenizer.convert_tokens_to_string(
- output_tokens[prefix_offset:read_offset])
- new_text = tokenizer.convert_tokens_to_string(
- output_tokens[prefix_offset:])
- else:
- prefix_text = _convert_tokens_to_string_with_added_encoders(
- tokenizer,
- output_tokens[prefix_offset:read_offset],
- skip_special_tokens=skip_special_tokens,
- spaces_between_special_tokens=spaces_between_special_tokens,
- )
- new_text = _convert_tokens_to_string_with_added_encoders(
- tokenizer,
- output_tokens[prefix_offset:],
- skip_special_tokens=skip_special_tokens,
- spaces_between_special_tokens=spaces_between_special_tokens,
- )
- if len(new_text) <= len(prefix_text) or new_text.endswith("�"):
- # utf-8 char at the end means it's a potential unfinished byte sequence
- # from byte fallback tokenization.
- # If it's in the middle, it's probably a real invalid id generated
- # by the model
- return new_tokens, "", prefix_offset, read_offset
- new_text = new_text[len(prefix_text):]
- return new_tokens, new_text, read_offset, len(output_tokens)
|