123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 |
- from typing import Dict, List, Optional, Tuple
- import torch
- from aphrodite.common.sequence import SamplerOutput, SequenceGroupMetadata
- from aphrodite.spec_decode.interfaces import (SpeculativeProposals,
- SpeculativeProposer)
- from aphrodite.spec_decode.util import sampler_output_to_torch
- from aphrodite.task_handler.worker_base import WorkerBase
- class Top1Proposer(SpeculativeProposer):
- """Helper class which separates out sequences which would exceed the max
- model length when speculated upon.
- This allows combinations of models such as JackFram/llama-68m draft with
- meta-llama/Llama2-13b-chat-hf, as llama-68m has max_position_embeddings of
- 2048 while Llama2-13b has max_position_embeddings of 4096.
- We treat the sequences which exceed the proposal draft model length as
- "non-spec sequences". Essentially they skip the draft model and go through
- normal decoding in the target model.
- Currently, only proposal_lens of 0 and k are supported, where k is a global
- batch proposal length. In the future Aphrodite should support per-sequence
- proposal lengths.
- """
- def __init__(
- self,
- worker: WorkerBase,
- device: str,
- vocab_size: int,
- max_proposal_len: Optional[int] = None,
- ):
- self._worker = worker
- self._device = device
- self.max_proposal_len = max_proposal_len
- self._vocab_size = vocab_size
- def get_proposals(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- blocks_to_swap_in: Dict[int, int],
- blocks_to_swap_out: Dict[int, int],
- blocks_to_copy: Dict[int, List[int]],
- proposal_len: int,
- ) -> SpeculativeProposals:
- """Get speculative proposals given the input batch.
- Sequences which would exceed the max model length are skipped during
- speculation.
- """
- # Split speculative- and non-speculative- sequences.
- (
- proposal_lens,
- nonzero_proposal_len_seqs,
- nonzero_proposal_len_indices,
- ) = self._split_by_max_model_len(seq_group_metadata_list, proposal_len)
- if nonzero_proposal_len_seqs:
- # Speculate tokens using the draft worker for the speculative
- # sequences.
- # If sampler_transposed is true, then maybe_sampler_output's
- # token_ids is like [batch] format in proposal_len size list,
- # while if it is false, the format would be [proposal_len]
- # in batch size list
- maybe_sampler_output, transposed = self._worker.sampler_output(
- seq_group_metadata_list=nonzero_proposal_len_seqs,
- blocks_to_swap_in=blocks_to_swap_in,
- blocks_to_swap_out=blocks_to_swap_out,
- blocks_to_copy=blocks_to_copy,
- sample_len=proposal_len,
- )
- else:
- # If no sequences can be speculated, set sampler output to None.
- maybe_sampler_output = None
- transposed = False
- # Combine speculative- and non-speculative sequences into the same
- # representation.
- proposal_tokens, proposal_probs, proposal_lens = self._merge_outputs(
- batch_size=len(seq_group_metadata_list),
- proposal_len=proposal_len,
- maybe_sampler_output=maybe_sampler_output,
- proposal_lens=proposal_lens,
- nonzero_proposal_len_indices=nonzero_proposal_len_indices,
- sampler_transposed=transposed,
- )
- proposals = SpeculativeProposals(
- proposal_token_ids=proposal_tokens,
- proposal_probs=proposal_probs,
- proposal_lens=proposal_lens,
- )
- return proposals
- def _split_by_max_model_len(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- proposal_len: int,
- ) -> Tuple[List[int], List[SequenceGroupMetadata], List[int]]:
- """Determine which sequences would exceed the max model length."""
- proposal_lens: List[int] = []
- nonzero_proposal_len_seqs: List[SequenceGroupMetadata] = []
- nonzero_proposal_len_indices: List[int] = []
- for i, seq_group_metadata in enumerate(seq_group_metadata_list):
- seq_data = next(iter(seq_group_metadata.seq_data.values()))
- seq_len = seq_data.get_len()
- # Currently only proposal lens of 0 or the global batch proposal len
- # are supported.
- # If max_proposal_len is defined, then we shall no exccess this
- # quota for nonzero_proposal
- if (self.max_proposal_len is None
- or seq_len + proposal_len < self.max_proposal_len):
- proposal_lens.append(proposal_len)
- nonzero_proposal_len_seqs.append(seq_group_metadata)
- nonzero_proposal_len_indices.append(i)
- else:
- proposal_lens.append(0)
- return (
- proposal_lens,
- nonzero_proposal_len_seqs,
- nonzero_proposal_len_indices,
- )
- def _merge_outputs(
- self,
- batch_size: int,
- proposal_len: int,
- maybe_sampler_output: Optional[SamplerOutput],
- proposal_lens: List[int],
- nonzero_proposal_len_indices: List[int],
- sampler_transposed: bool,
- ) -> Tuple[torch.Tensor, torch.tensor, torch.Tensor]:
- """After speculations are produced, merge the speculation results with
- the skipped sequences.
- """
- if maybe_sampler_output is None:
- # If no speculative tokens, the sampler output will be None.
- # In this case we return empty proposals.
- proposal_tokens = torch.full(
- size=(
- batch_size,
- proposal_len,
- ),
- fill_value=-1,
- dtype=torch.long,
- device=self._device,
- )
- proposal_probs = torch.zeros(
- batch_size,
- proposal_len,
- self._vocab_size,
- dtype=torch.float32,
- device=self._device,
- )
- proposal_lens_tensor = torch.zeros(len(proposal_lens),
- dtype=torch.long,
- device=self._device)
- return proposal_tokens, proposal_probs, proposal_lens_tensor
- sampler_output = maybe_sampler_output
- proposal_tokens, proposal_probs = sampler_output_to_torch(
- sampler_output, sampler_transposed)
- # Now, reformat the output GPU tensors such that each sequence has
- # a proposal. the proposal can be empty, e.g. [-1, -1, -1]
- entire_proposal_tokens = torch.full(
- size=(batch_size, *proposal_tokens.shape[1:]),
- fill_value=-1,
- dtype=torch.long,
- device=self._device,
- )
- entire_proposal_tokens[nonzero_proposal_len_indices] = proposal_tokens
- entire_proposal_probs = torch.zeros(
- batch_size,
- *proposal_probs.shape[1:],
- dtype=torch.float32,
- device=self._device,
- )
- entire_proposal_probs[nonzero_proposal_len_indices] = proposal_probs
- proposal_tokens, proposal_probs = (
- entire_proposal_tokens,
- entire_proposal_probs,
- )
- proposal_lens_tensor = torch.zeros(batch_size,
- dtype=torch.long,
- device=self._device)
- proposal_lens_tensor[nonzero_proposal_len_indices] = proposal_len
- return proposal_tokens, proposal_probs, proposal_lens_tensor
|