123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281 |
- # coding=utf-8
- # Adapted from
- # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gptj/modeling_gptj.py
- # Copyright 2023 The vLLM team.
- # Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Inference-only GPT-J model compatible with HuggingFace weights."""
- from typing import Iterable, List, Optional, Tuple
- import torch
- from torch import nn
- from transformers import GPTJConfig
- from aphrodite.attention import Attention, AttentionMetadata
- from aphrodite.common.sequence import SamplerOutput
- from aphrodite.distributed import get_tensor_model_parallel_world_size
- from aphrodite.modeling.layers.activation import get_act_fn
- from aphrodite.modeling.layers.linear import (ColumnParallelLinear,
- QKVParallelLinear,
- RowParallelLinear)
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.rotary_embedding import get_rope
- from aphrodite.modeling.layers.sampler import Sampler
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- ParallelLMHead, VocabParallelEmbedding)
- from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.quantization.base_config import QuantizationConfig
- class GPTJAttention(nn.Module):
- def __init__(
- self,
- config: GPTJConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.total_num_heads = config.num_attention_heads
- self.hidden_size = config.hidden_size
- self.head_size = self.hidden_size // self.total_num_heads
- self.qkv_proj = QKVParallelLinear(
- config.hidden_size,
- self.head_size,
- self.total_num_heads,
- bias=False,
- quant_config=quant_config,
- )
- self.out_proj = RowParallelLinear(
- config.hidden_size,
- config.hidden_size,
- bias=False,
- quant_config=quant_config,
- )
- tp_world_size = get_tensor_model_parallel_world_size()
- assert self.total_num_heads % tp_world_size == 0
- self.num_heads = self.total_num_heads // tp_world_size
- scaling = self.head_size**-0.5
- assert getattr(config, "rotary", True)
- assert config.rotary_dim % 2 == 0
- rope_theta = getattr(config, "rope_theta", 10000)
- max_position_embeddings = getattr(config, "max_position_embeddings",
- 8192)
- self.rotary_emb = get_rope(
- self.head_size,
- rotary_dim=config.rotary_dim,
- max_position=max_position_embeddings,
- base=rope_theta,
- is_neox_style=False,
- )
- self.attn = Attention(self.num_heads, self.head_size, scaling)
- def forward(
- self,
- position_ids: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- qkv, _ = self.qkv_proj(hidden_states)
- q, k, v = qkv.chunk(chunks=3, dim=-1)
- q, k = self.rotary_emb(position_ids, q, k)
- attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
- attn_output, _ = self.out_proj(attn_output)
- return attn_output
- class GPTJMLP(nn.Module):
- def __init__(
- self,
- intermediate_size: int,
- config: GPTJConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- hidden_size = config.n_embd
- self.fc_in = ColumnParallelLinear(
- hidden_size,
- intermediate_size,
- quant_config=quant_config,
- )
- self.fc_out = RowParallelLinear(
- intermediate_size,
- hidden_size,
- quant_config=quant_config,
- )
- quant_config = getattr(quant_config, "quant_config", None)
- self.act = get_act_fn(config.activation_function, quant_config,
- intermediate_size)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states, _ = self.fc_in(hidden_states)
- hidden_states = self.act(hidden_states)
- hidden_states, _ = self.fc_out(hidden_states)
- return hidden_states
- class GPTJBlock(nn.Module):
- def __init__(
- self,
- config: GPTJConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- inner_dim = (4 * config.n_embd
- if config.n_inner is None else config.n_inner)
- self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
- self.attn = GPTJAttention(config, quant_config)
- self.mlp = GPTJMLP(inner_dim, config, quant_config)
- def forward(
- self,
- position_ids: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- residual = hidden_states
- hidden_states = self.ln_1(hidden_states)
- attn_output = self.attn(
- position_ids=position_ids,
- hidden_states=hidden_states,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata,
- )
- mlp_output = self.mlp(hidden_states)
- hidden_states = attn_output + mlp_output + residual
- return hidden_states
- class GPTJModel(nn.Module):
- def __init__(
- self,
- config: GPTJConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.config = config
- self.embed_dim = config.n_embd
- self.wte = VocabParallelEmbedding(
- config.vocab_size,
- self.embed_dim,
- )
- self.h = nn.ModuleList(
- [GPTJBlock(config, quant_config) for _ in range(config.n_layer)])
- self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
- def forward(
- self,
- input_ids: torch.Tensor,
- position_ids: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- hidden_states = self.wte(input_ids)
- for i in range(len(self.h)):
- layer = self.h[i]
- hidden_states = layer(
- position_ids,
- hidden_states,
- kv_caches[i],
- attn_metadata,
- )
- hidden_states = self.ln_f(hidden_states)
- return hidden_states
- class GPTJForCausalLM(nn.Module):
- def __init__(
- self,
- config: GPTJConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.config = config
- self.quant_config = quant_config
- assert not config.tie_word_embeddings
- self.transformer = GPTJModel(config, quant_config)
- self.lm_head = ParallelLMHead(
- config.vocab_size,
- config.n_embd,
- bias=True,
- )
- self.logits_processor = LogitsProcessor(config.vocab_size)
- self.sampler = Sampler()
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- hidden_states = self.transformer(input_ids, positions, kv_caches,
- attn_metadata)
- return hidden_states
- def compute_logits(self, hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata) -> torch.Tensor:
- logits = self.logits_processor(self.lm_head.weight, hidden_states,
- sampling_metadata, self.lm_head.bias)
- return logits
- def sample(
- self,
- logits: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[SamplerOutput]:
- next_tokens = self.sampler(logits, sampling_metadata)
- return next_tokens
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- stacked_params_mapping = [
- # (param_name, shard_name, shard_id)
- ("qkv_proj", "q_proj", "q"),
- ("qkv_proj", "k_proj", "k"),
- ("qkv_proj", "v_proj", "v"),
- ("gate_up_proj", "gate_proj", 0),
- ("gate_up_proj", "up_proj", 1),
- ]
- params_dict = dict(self.named_parameters())
- for name, loaded_weight in weights:
- if "attn.bias" in name or "attn.masked_bias" in name:
- continue
- for (param_name, weight_name, shard_id) in stacked_params_mapping:
- if weight_name not in name:
- continue
- name = name.replace(weight_name, param_name)
- # Skip loading extra bias for GPTQ models.
- if name.endswith(".bias") and name not in params_dict:
- continue
- param = params_dict[name]
- weight_loader = param.weight_loader
- weight_loader(param, loaded_weight, shard_id)
- break
- else:
- # Skip loading extra bias for GPTQ models.
- if name.endswith(".bias") and name not in params_dict:
- continue
- param = params_dict[name]
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
|