123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444 |
- # coding=utf-8
- # Adapted from
- # https://github.com/huggingface/transformers/blob/a5cc30d72ae2dc19af534e4b35c986cc28db1275/src/transformers/models/falcon/modeling_falcon.py
- # Copyright 2023 The vLLM team.
- # Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights
- # reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch Falcon model."""
- import math
- from typing import Iterable, List, Optional, Tuple, Union
- import torch
- from torch import nn
- from torch.nn import LayerNorm
- from transformers import FalconConfig as HF_FalconConfig
- from aphrodite.attention import Attention, AttentionMetadata
- from aphrodite.common.sequence import SamplerOutput
- from aphrodite.distributed import (get_tensor_model_parallel_rank,
- get_tensor_model_parallel_world_size,
- tensor_model_parallel_all_reduce)
- from aphrodite.modeling.layers.activation import get_act_fn
- from aphrodite.modeling.layers.linear import (ColumnParallelLinear,
- QKVParallelLinear,
- RowParallelLinear)
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.rotary_embedding import get_rope
- from aphrodite.modeling.layers.sampler import Sampler
- from aphrodite.modeling.layers.vocab_parallel_embedding import \
- VocabParallelEmbedding
- from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.quantization.base_config import QuantizationConfig
- from aphrodite.transformers_utils.configs import RWConfig
- FalconConfig = Union[HF_FalconConfig, RWConfig]
- def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor:
- closest_power_of_2 = 2**math.floor(math.log2(total_num_heads))
- base = torch.tensor(2**(-(2**-(math.log2(closest_power_of_2) - 3))),
- dtype=torch.float32)
- powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
- slopes = torch.pow(base, powers)
- if closest_power_of_2 != total_num_heads:
- extra_base = torch.tensor(
- 2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
- dtype=torch.float32)
- num_remaining_heads = min(closest_power_of_2,
- total_num_heads - closest_power_of_2)
- extra_powers = torch.arange(1,
- 1 + 2 * num_remaining_heads,
- 2,
- dtype=torch.int32)
- slopes = torch.cat(
- [slopes, torch.pow(extra_base, extra_powers)], dim=0)
- return slopes
- class FalconAttention(nn.Module):
- def __init__(
- self,
- config: FalconConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.hidden_size = config.hidden_size
- tp_size = get_tensor_model_parallel_world_size()
- self.total_num_heads = config.num_attention_heads
- assert self.total_num_heads % tp_size == 0
- self.num_heads = self.total_num_heads // tp_size
- self.head_dim = self.hidden_size // self.total_num_heads
- assert self.head_dim * self.total_num_heads == self.hidden_size
- self.new_decoder_architecture = config.new_decoder_architecture
- self.multi_query = config.multi_query
- if self.new_decoder_architecture:
- self.total_num_kv_heads = config.num_kv_heads
- elif self.multi_query:
- self.total_num_kv_heads = 1
- else:
- self.total_num_kv_heads = self.total_num_heads
- if self.total_num_kv_heads >= tp_size:
- # Number of KV heads is greater than TP size, so we partition
- # the KV heads across multiple tensor parallel GPUs.
- assert self.total_num_kv_heads % tp_size == 0
- else:
- # Number of KV heads is less than TP size, so we replicate
- # the KV heads across multiple tensor parallel GPUs.
- assert tp_size % self.total_num_kv_heads == 0
- self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
- self.query_key_value = QKVParallelLinear(
- self.hidden_size,
- self.head_dim,
- self.total_num_heads,
- self.total_num_kv_heads,
- bias=config.bias,
- skip_bias_add=True,
- quant_config=quant_config,
- )
- self.q_size = self.num_heads * self.head_dim
- self.kv_size = self.num_kv_heads * self.head_dim
- # Layer-wise attention scaling
- self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
- self.reduce_row_parallel_results = not (config.new_decoder_architecture
- or config.parallel_attn)
- self.dense = RowParallelLinear(
- self.hidden_size,
- self.hidden_size,
- bias=config.bias,
- skip_bias_add=True,
- quant_config=quant_config,
- reduce_results=self.reduce_row_parallel_results)
- self.use_rotary = config.rotary
- self.use_alibi = config.alibi
- assert not (self.use_rotary and self.use_alibi), (
- "Rotary and alibi are mutually exclusive.")
- if self.use_rotary:
- rope_theta = getattr(config, "rope_theta", 10000)
- max_position_embeddings = getattr(config,
- "max_position_embeddings", 8192)
- self.rotary_emb = get_rope(
- self.head_dim,
- rotary_dim=self.head_dim,
- max_position=max_position_embeddings,
- base=rope_theta,
- )
- self.attn = Attention(self.num_heads,
- self.head_dim,
- self.inv_norm_factor,
- num_kv_heads=self.num_kv_heads)
- elif self.use_alibi:
- tp_rank = get_tensor_model_parallel_rank()
- head_start = tp_rank * self.num_heads
- head_end = (tp_rank + 1) * self.num_heads
- alibi_slopes = (_get_alibi_slopes(self.total_num_heads) *
- self.inv_norm_factor)
- alibi_slopes = alibi_slopes[head_start:head_end].tolist()
- self.attn = Attention(self.num_heads,
- self.head_dim,
- self.inv_norm_factor,
- num_kv_heads=self.num_kv_heads,
- alibi_slopes=alibi_slopes)
- else:
- self.attn = Attention(self.num_heads,
- self.head_dim,
- scale=self.inv_norm_factor,
- num_kv_heads=self.num_kv_heads)
- def forward(
- self,
- positions: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- qkv, bias = self.query_key_value(hidden_states)
- if bias is not None:
- qkv += bias
- q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
- if self.use_rotary:
- q, k = self.rotary_emb(positions, q, k)
- attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
- attn_output, bias = self.dense(attn_output)
- return attn_output, bias
- class FalconMLP(nn.Module):
- def __init__(
- self,
- config: FalconConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- hidden_size = config.hidden_size
- self.dense_h_to_4h = ColumnParallelLinear(hidden_size,
- 4 * hidden_size,
- bias=config.bias,
- skip_bias_add=True,
- quant_config=quant_config)
- quant_config = getattr(quant_config, "quant_config", None)
- self.act = get_act_fn("gelu", quant_config, 4 * hidden_size)
- self.reduce_row_parallel_results = not (config.new_decoder_architecture
- or config.parallel_attn)
- self.dense_4h_to_h = RowParallelLinear(
- 4 * hidden_size,
- hidden_size,
- bias=config.bias,
- skip_bias_add=True,
- reduce_results=self.reduce_row_parallel_results,
- quant_config=quant_config)
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- # NOTE(zhuohan): Following huggingface, we do not fuse bias add here.
- x, bias = self.dense_h_to_4h(x)
- if bias is not None:
- x += bias
- x = self.act(x)
- x, bias = self.dense_4h_to_h(x)
- return x, bias
- class FalconDecoderLayer(nn.Module):
- def __init__(
- self,
- config: FalconConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- hidden_size = config.hidden_size
- self.num_heads = config.num_attention_heads
- self.self_attention = FalconAttention(config, quant_config)
- self.mlp = FalconMLP(config, quant_config)
- self.config = config
- if config.new_decoder_architecture:
- # The layer norm before self-attention
- self.ln_attn = LayerNorm(hidden_size,
- eps=config.layer_norm_epsilon)
- # The layer norm before the MLP
- self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
- else:
- self.input_layernorm = LayerNorm(hidden_size,
- eps=config.layer_norm_epsilon)
- if not config.parallel_attn:
- self.post_attention_layernorm = LayerNorm(
- hidden_size, eps=config.layer_norm_epsilon)
- self.reduce_row_parallel_results = not (config.new_decoder_architecture
- or config.parallel_attn)
- def forward(
- self,
- positions: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- residual = hidden_states
- if self.config.new_decoder_architecture:
- attention_layernorm_out = self.ln_attn(hidden_states)
- mlp_layernorm_out = self.ln_mlp(hidden_states)
- else:
- attention_layernorm_out = self.input_layernorm(hidden_states)
- # Self attention.
- attention_output, attention_bias = self.self_attention(
- positions=positions,
- hidden_states=attention_layernorm_out,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata,
- )
- if self.reduce_row_parallel_results and attention_bias is not None:
- attention_output += attention_bias
- if not self.config.new_decoder_architecture:
- if self.config.parallel_attn:
- mlp_layernorm_out = attention_layernorm_out
- else:
- residual += attention_output
- mlp_layernorm_out = self.post_attention_layernorm(residual)
- # MLP.
- mlp_output, mlp_bias = self.mlp(mlp_layernorm_out)
- if self.reduce_row_parallel_results and mlp_bias is not None:
- mlp_output += mlp_bias
- if not self.reduce_row_parallel_results:
- # When MLP and Attention layers are parallel, we can use
- # only one all-reduce operator to reduce the results from
- # both MLP and Attention layers.
- mlp_output += attention_output
- mlp_output = tensor_model_parallel_all_reduce(mlp_output)
- if attention_bias is not None:
- mlp_output += attention_bias
- if mlp_bias is not None:
- mlp_output += mlp_bias
- output = mlp_output + residual
- return output
- class FalconModel(nn.Module):
- def __init__(
- self,
- config: FalconConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.config = config
- self.embed_dim = config.hidden_size
- self.num_heads = config.num_attention_heads
- self.use_alibi = config.alibi
- # Embedding + LN Embedding
- self.word_embeddings = VocabParallelEmbedding(
- config.vocab_size,
- self.embed_dim,
- )
- # Transformer blocks
- self.h = nn.ModuleList([
- FalconDecoderLayer(config, quant_config)
- for _ in range(config.num_hidden_layers)
- ])
- # Final Layer Norm
- self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
- def forward(
- self,
- input_ids: torch.LongTensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- hidden_states = self.word_embeddings(input_ids)
- for i in range(len(self.h)):
- layer = self.h[i]
- hidden_states = layer(
- positions,
- hidden_states,
- kv_caches[i],
- attn_metadata,
- )
- hidden_states = self.ln_f(hidden_states)
- return hidden_states
- class FalconForCausalLM(nn.Module):
- def __init__(
- self,
- config: FalconConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.config = config
- self.quant_config = quant_config
- self.transformer = FalconModel(config, quant_config)
- self.lm_head_weight = self.transformer.word_embeddings.weight
- self.logits_processor = LogitsProcessor(config.vocab_size)
- self.sampler = Sampler()
- def forward(
- self,
- input_ids: torch.LongTensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- hidden_states = self.transformer(
- input_ids,
- positions,
- kv_caches,
- attn_metadata,
- )
- return hidden_states
- def compute_logits(self, hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata) -> torch.Tensor:
- logits = self.logits_processor(self.lm_head_weight, hidden_states,
- sampling_metadata)
- return logits
- def sample(
- self,
- logits: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[SamplerOutput]:
- next_tokens = self.sampler(logits, sampling_metadata)
- return next_tokens
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- total_num_heads = self.config.num_attention_heads
- if self.config.new_decoder_architecture:
- total_num_kv_heads = self.config.num_kv_heads
- elif self.config.multi_query:
- total_num_kv_heads = 1
- else:
- total_num_kv_heads = total_num_heads
- num_query_heads_per_kv_head = total_num_heads // total_num_kv_heads
- params_dict = dict(self.named_parameters(remove_duplicate=False))
- for name, loaded_weight in weights:
- if name == "lm_head.weight":
- # Falcon uses tied embeddings.
- continue
- # Skip loading extra bias for GPTQ models.
- if name.endswith(".bias") and name not in params_dict:
- continue
- param = params_dict[name]
- if "query_key_value" in name:
- output_dim = getattr(param, "output_dim", None)
- loaded_weight_shape = loaded_weight.shape
- if output_dim is not None:
- loaded_weight = loaded_weight.view(
- loaded_weight_shape[:output_dim] +
- (total_num_kv_heads, num_query_heads_per_kv_head + 2,
- -1) + loaded_weight_shape[output_dim + 1:])
- wq = loaded_weight.narrow(
- output_dim + 1, 0,
- num_query_heads_per_kv_head).reshape(
- *loaded_weight_shape[:output_dim], -1,
- *loaded_weight_shape[output_dim + 1:])
- wk = loaded_weight.narrow(
- output_dim + 1, num_query_heads_per_kv_head,
- 1).reshape(*loaded_weight_shape[:output_dim], -1,
- *loaded_weight_shape[output_dim + 1:])
- wv = loaded_weight.narrow(
- output_dim + 1, num_query_heads_per_kv_head + 1,
- 1).reshape(*loaded_weight_shape[:output_dim], -1,
- *loaded_weight_shape[output_dim + 1:])
- loaded_weight = torch.cat([wq, wk, wv], dim=output_dim)
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
|