123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- from abc import abstractmethod
- from typing import Any, Dict, Optional, Set, Tuple
- from loguru import logger
- from aphrodite.executor.executor_base import ExecutorAsyncBase
- from aphrodite.executor.gpu_executor import GPUExecutor
- from aphrodite.lora.request import LoRARequest
- from aphrodite.common.sequence import SamplerOutput
- class DistributedGPUExecutor(GPUExecutor):
- """Abstract superclass of multi-GPU executor implementations."""
- def determine_num_available_blocks(self) -> Tuple[int, int]:
- """Determine the number of available KV blocks.
- This invokes `determine_num_available_blocks` on each worker and takes
- the min of the results, guaranteeing that the selected cache sizes are
- compatible with all workers.
- Returns:
- - tuple[num_gpu_blocks, num_cpu_blocks]
- """
- # Get the maximum number of blocks that can be allocated on GPU and CPU.
- num_blocks = self._run_workers("determine_num_available_blocks", )
- # Since we use a shared centralized controller, we take the minimum
- # number of blocks across all workers to make sure all the memory
- # operators can be applied to all workers.
- num_gpu_blocks = min(b[0] for b in num_blocks)
- num_cpu_blocks = min(b[1] for b in num_blocks)
- return num_gpu_blocks, num_cpu_blocks
- def initialize_cache(self, num_gpu_blocks: int,
- num_cpu_blocks: int) -> None:
- """Initialize the KV cache in all workers.
- """
- # NOTE: We log here to avoid multiple logs when number of workers is
- # greater than one. We could log in the engine, but not all executors
- # have GPUs.
- logger.info("# GPU blocks: %d, # CPU blocks: %d", num_gpu_blocks,
- num_cpu_blocks)
- logger.info(
- f"Minimum concurrency: {num_gpu_blocks * self.cache_config.block_size / self.scheduler_config.max_model_len:.2f}x" # noqa: E501
- )
- self.cache_config.num_gpu_blocks = num_gpu_blocks
- self.cache_config.num_cpu_blocks = num_cpu_blocks
- self._run_workers("initialize_cache",
- num_gpu_blocks=num_gpu_blocks,
- num_cpu_blocks=num_cpu_blocks)
- def execute_model(self, *args, **kwargs) -> SamplerOutput:
- all_outputs = self._run_workers("execute_model",
- driver_args=args,
- driver_kwargs=kwargs)
- # Only the driver worker returns the sampling results.
- return all_outputs[0]
- def add_lora(self, lora_request: LoRARequest) -> bool:
- assert lora_request.lora_int_id > 0, "lora_id must be greater than 0."
- return self._run_workers(
- "add_lora",
- lora_request=lora_request,
- )
- def remove_lora(self, lora_id: int) -> bool:
- assert lora_id > 0, "lora_id must be greater than 0."
- return self._run_workers(
- "remove_lora",
- lora_id=lora_id,
- )
- def list_loras(self) -> Set[int]:
- return self._run_workers("list_loras")
- @abstractmethod
- def _run_workers(
- self,
- method: str,
- *args,
- driver_args: Optional[Tuple[Any, ...]] = None,
- driver_kwargs: Optional[Dict[str, Any]] = None,
- max_concurrent_workers: Optional[int] = None,
- **kwargs,
- ) -> Any:
- """Runs the given method on all workers."""
- raise NotImplementedError
- class DistributedGPUExecutorAsync(DistributedGPUExecutor, ExecutorAsyncBase):
- @abstractmethod
- async def _run_workers_async(
- self,
- method: str,
- *args,
- driver_args: Optional[Tuple[Any, ...]] = None,
- driver_kwargs: Optional[Dict[str, Any]] = None,
- **kwargs,
- ) -> Any:
- """Runs the given method on all workers."""
- raise NotImplementedError
- async def execute_model_async(self, *args, **kwargs) -> SamplerOutput:
- all_outputs = await self._run_workers_async("execute_model",
- driver_args=args,
- driver_kwargs=kwargs)
- # Only the driver worker returns the sampling results.
- return all_outputs[0]
|