123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391 |
- """Attention layer with xFormers and PagedAttention."""
- from dataclasses import dataclass
- from typing import Dict, List, Optional, Tuple, Type
- import torch
- from xformers import ops as xops
- from xformers.ops.fmha.attn_bias import (AttentionBias,
- BlockDiagonalCausalMask,
- LowerTriangularMaskWithTensorBias)
- from aphrodite.attention.backends.abstract import (AttentionBackend,
- AttentionImpl,
- AttentionMetadata,
- AttentionMetadataPerStage)
- from aphrodite.attention.ops.paged_attn import (PagedAttention,
- PagedAttentionMetadata)
- class XFormersBackend(AttentionBackend):
- @staticmethod
- def get_impl_cls() -> Type["XFormersImpl"]:
- return XFormersImpl
- @staticmethod
- def make_metadata(*args, **kwargs) -> "XFormersMetadata":
- return XFormersMetadata(*args, **kwargs)
- @staticmethod
- def get_kv_cache_shape(
- num_blocks: int,
- block_size: int,
- num_kv_heads: int,
- head_size: int,
- ) -> Tuple[int, ...]:
- return PagedAttention.get_kv_cache_shape(num_blocks, block_size,
- num_kv_heads, head_size)
- @staticmethod
- def swap_blocks(
- src_kv_cache: torch.Tensor,
- dst_kv_cache: torch.Tensor,
- src_to_dst: Dict[int, int],
- ) -> None:
- PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)
- @staticmethod
- def copy_blocks(
- kv_caches: List[torch.Tensor],
- src_to_dists: Dict[int, List[int]],
- ) -> None:
- PagedAttention.copy_blocks(kv_caches, src_to_dists)
- @dataclass
- class XFormersMetadata(AttentionMetadataPerStage, PagedAttentionMetadata):
- """Metadata for XFormersbackend.
- NOTE: Any python object stored here is not updated when it is
- cuda-graph replayed. If you have values that need to be changed
- dynamically, it should be stored in tensor. The tensor has to be
- updated from `CUDAGraphRunner.forward` API.
- """
- # Currently, input sequences can only contain all prompts
- # or all decoding. True if all sequences are prompts.
- is_prompt: bool
- # (batch_size,). The prompt length per sequence. None if it is a decoding.
- prompt_lens: Optional[List[int]]
- # prompt_lens stored as a tensor.
- prompt_lens_tensor: Optional[torch.Tensor]
- # NOTE: Definition of context_len, subquery_len, and seqlen.
- # |---------- N-1 iteration --------|
- # |---------------- N iteration ---------------------|
- # |- tokenA -|......................|-- newTokens ---|
- # |---------- context_len ----------|
- # |-------------------- seqlen ----------------------|
- # |- subquery_len -|
- # WARNING(sang): context_len has different definition depending on if it is
- # prefill vs decoding. When it is prefill, it doesn't include new tokens.
- # When it is for decoding, it includes a new token.
- # Maximum subquery length in the batch.
- max_subquery_len: Optional[int]
- # FIXME: It is for flash attn.
- # Maximum prompt length in the batch.
- max_prompt_len: Optional[int]
- # (batch_size + 1,). The cumulative subquery lengths of the sequences in
- # the batch, used to index into subquery. E.g., if the subquery length
- # is [4, 6], it is [0, 4, 10].
- subquery_start_loc: Optional[torch.Tensor]
- # FIXME: It is for flash attn.
- # (batch_size + 1,). The cumulative sequence lengths of the sequences in
- # the batch, used to index into sequence. E.g., if the sequence length is
- # [4, 6], it is [0, 4, 10].
- seq_start_loc: Optional[torch.Tensor]
- # Whether or not if cuda graph is enabled.
- # Cuda-graph is currently enabled for decoding only.
- # TODO: Move `use_cuda_graph` out since it's unrelated to attention.
- use_cuda_graph: bool
- def __post_init__(self):
- # Set during the execution of the first attention op.
- # It is a list because it is needed to set per prompt
- # when alibi slopes is used. It is because of the limitation
- # from xformer API.
- # will not appear in the __repr__ and __init__
- self.attn_bias: Optional[List[AttentionBias]] = None
- class XFormersImpl(AttentionImpl):
- """
- If the input tensors contain prompt tokens, the layout is as follows:
- |<--------------- num_prefill_tokens ----------------->|
- |<--prefill_0-->|<--prefill_1-->|...|<--prefill_N-1--->|
- Otherwise, the layout is as follows:
- |<----------------- num_decode_tokens ------------------>|
- |<--decode_0-->|..........|<--decode_M-1-->|<--padding-->|
- Generation tokens can contain padding when cuda-graph is used.
- Currently, prompt tokens don't contain any padding.
- The prompts might have different lengths, while the generation tokens
- always have length 1.
- If chunked prefill is enabled, prefill tokens and decode tokens can be
- batched together in a flattened 1D query.
- |<----- num_prefill_tokens ---->|<------- num_decode_tokens --------->|
- |<-prefill_0->|...|<-prefill_N-1->|<--decode_0-->|...|<--decode_M-1-->|
- Currently, cuda graph is disabled for chunked prefill, meaning there's no
- padding between prefill and decode tokens.
- """
- def __init__(
- self,
- num_heads: int,
- head_size: int,
- scale: float,
- num_kv_heads: Optional[int] = None,
- alibi_slopes: Optional[List[float]] = None,
- sliding_window: Optional[int] = None,
- ) -> None:
- self.num_heads = num_heads
- self.head_size = head_size
- self.scale = float(scale)
- self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
- self.sliding_window = sliding_window
- if alibi_slopes is not None:
- alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
- self.alibi_slopes = alibi_slopes
- assert self.num_heads % self.num_kv_heads == 0
- self.num_queries_per_kv = self.num_heads // self.num_kv_heads
- suppored_head_sizes = PagedAttention.get_supported_head_sizes()
- if head_size not in suppored_head_sizes:
- raise ValueError(
- f"Head size {head_size} is not supported by PagedAttention. "
- f"Supported head sizes are: {suppored_head_sizes}.")
- def forward(
- self,
- query: torch.Tensor,
- key: torch.Tensor,
- value: torch.Tensor,
- kv_cache: Optional[torch.Tensor],
- attn_metadata: AttentionMetadata[XFormersMetadata],
- kv_scale: float,
- ) -> torch.Tensor:
- """Forward pass with xFormers and PagedAttention.
- Args:
- query: shape = [num_tokens, num_heads * head_size]
- key: shape = [num_tokens, num_kv_heads * head_size]
- value: shape = [num_tokens, num_kv_heads * head_size]
- kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
- attn_metadata: Metadata for attention.
- Returns:
- shape = [num_tokens, num_heads * head_size]
- """
- num_tokens, hidden_size = query.shape
- query = query.view(-1, self.num_heads, self.head_size)
- key = key.view(-1, self.num_kv_heads, self.head_size)
- value = value.view(-1, self.num_kv_heads, self.head_size)
- if kv_cache is not None:
- key_cache, value_cache = PagedAttention.split_kv_cache(
- kv_cache, self.num_kv_heads, self.head_size)
- # Reshape the input keys and values and store them in the cache.
- # If kv_cache is not provided, the new key and value tensors are
- # not cached. This happens during the initial memory profiling run.
- PagedAttention.write_to_paged_cache(key, value, key_cache,
- value_cache,
- attn_metadata.slot_mapping,
- attn_metadata.kv_cache_dtype,
- kv_scale)
- num_prefill_tokens = attn_metadata.num_prefill_tokens
- num_decode_tokens = attn_metadata.num_decode_tokens
- assert key.shape[0] == num_prefill_tokens + num_decode_tokens
- assert value.shape[0] == num_prefill_tokens + num_decode_tokens
- output = torch.empty_like(query)
- # Query for decode. KV is not needed because it is already cached.
- decode_query = query[num_prefill_tokens:]
- # QKV for prefill.
- query = query[:num_prefill_tokens]
- key = key[:num_prefill_tokens]
- value = value[:num_prefill_tokens]
- assert query.shape[0] == num_prefill_tokens
- assert decode_query.shape[0] == num_decode_tokens
- if prefill_meta := attn_metadata.prefill_metadata:
- # Prompt run.
- if kv_cache is None or prefill_meta.block_tables.numel() == 0:
- # normal attention.
- # block tables are empty if the prompt does not have a cached
- # prefix.
- out = self._run_memory_efficient_xformers_forward(
- query, key, value, prefill_meta)
- assert out.shape == output[:num_prefill_tokens].shape
- output[:num_prefill_tokens] = out
- else:
- # prefix-enabled attention
- # TODO: this triton kernel has regression issue (broke) to
- # deal with different data types between KV and FP8 KV cache,
- # to be addressed separately.
- out = PagedAttention.forward_prefix(
- query,
- key,
- value,
- key_cache,
- value_cache,
- prefill_meta.block_tables,
- prefill_meta.subquery_start_loc,
- prefill_meta.prompt_lens_tensor,
- prefill_meta.context_lens,
- prefill_meta.max_subquery_len,
- self.alibi_slopes,
- )
- assert output[:num_prefill_tokens].shape == out.shape
- output[:num_prefill_tokens] = out
- if decode_meta := attn_metadata.decode_metadata:
- output[num_prefill_tokens:] = PagedAttention.forward_decode(
- decode_query,
- key_cache,
- value_cache,
- decode_meta.block_tables,
- decode_meta.context_lens,
- decode_meta.max_context_len,
- attn_metadata.kv_cache_dtype,
- self.num_kv_heads,
- self.scale,
- self.alibi_slopes,
- kv_scale,
- )
- # Reshape the output tensor.
- return output.view(-1, self.num_heads * self.head_size)
- def _run_memory_efficient_xformers_forward(
- self,
- query: torch.Tensor,
- key: torch.Tensor,
- value: torch.Tensor,
- attn_metadata: XFormersMetadata,
- ) -> torch.Tensor:
- """Attention for 1D query of multiple prompts. Multiple prompt
- tokens are flattened in to `query` input.
- See https://facebookresearch.github.io/xformers/components/ops.html
- for API spec.
- Args:
- output: shape = [num_prefill_tokens, num_heads, head_size]
- query: shape = [num_prefill_tokens, num_heads, head_size]
- key: shape = [num_prefill_tokens, num_kv_heads, head_size]
- value: shape = [num_prefill_tokens, num_kv_heads, head_size]
- attn_metadata: Metadata for attention.
- """
- assert attn_metadata.prompt_lens is not None
- original_query = query
- if self.num_kv_heads != self.num_heads:
- # GQA/MQA requires the shape [B, M, G, H, K].
- # Note that the output also has the same shape (which is different
- # from a spec from the doc).
- query = query.view(query.shape[0], self.num_kv_heads,
- self.num_queries_per_kv, query.shape[-1])
- key = key[:, :,
- None, :].expand(key.shape[0], self.num_kv_heads,
- self.num_queries_per_kv, key.shape[-1])
- value = value[:, :,
- None, :].expand(value.shape[0], self.num_kv_heads,
- self.num_queries_per_kv,
- value.shape[-1])
- # Set attention bias if not provided. This typically happens at
- # the very attention layer of every iteration.
- # FIXME: This is a hack.
- if attn_metadata.attn_bias is None:
- if self.alibi_slopes is None:
- attn_bias = BlockDiagonalCausalMask.from_seqlens(
- attn_metadata.prompt_lens)
- if self.sliding_window is not None:
- attn_bias = attn_bias.make_local_attention(
- self.sliding_window)
- attn_metadata.attn_bias = [attn_bias]
- else:
- attn_metadata.attn_bias = _make_alibi_bias(
- self.alibi_slopes, self.num_kv_heads, query.dtype,
- attn_metadata.prompt_lens)
- # No alibi slopes.
- # TODO: Too many view operations. Let's try to reduce
- # them in the future for code readability.
- if self.alibi_slopes is None:
- # Add the batch dimension.
- query = query.unsqueeze(0)
- key = key.unsqueeze(0)
- value = value.unsqueeze(0)
- out = xops.memory_efficient_attention_forward(
- query,
- key,
- value,
- attn_bias=attn_metadata.attn_bias[0],
- p=0.0,
- scale=self.scale)
- return out.view_as(original_query)
- # Attention with alibi slopes.
- # FIXME: Because xformers does not support dynamic sequence
- # lengths with custom attention bias, we process each prompt one by
- # one. This is inefficient, especially when we have many short prompts.
- output = torch.empty_like(original_query)
- start = 0
- for i, prompt_len in enumerate(attn_metadata.prompt_lens):
- end = start + prompt_len
- out = xops.memory_efficient_attention_forward(
- query[None, start:end],
- key[None, start:end],
- value[None, start:end],
- attn_bias=attn_metadata.attn_bias[i],
- p=0.0,
- scale=self.scale)
- # TODO: Unnecessary copy. Optimize.
- output[start:end].copy_(out.view_as(original_query[start:end]))
- start += prompt_len
- return output
- def _make_alibi_bias(
- alibi_slopes: torch.Tensor,
- num_kv_heads: int,
- dtype: torch.dtype,
- prompt_lens: List[int],
- ) -> LowerTriangularMaskWithTensorBias:
- attn_biases = []
- for prompt_len in prompt_lens:
- bias = torch.arange(prompt_len, dtype=dtype)
- # NOTE: HF uses
- # `bias = bias[None, :].repeat(prompt_len, 1)`
- # here. We find that both biases give the same results, but
- # the bias below more accurately follows the original ALiBi
- # paper.
- # Calculate a matrix where each element represents ith element- jth
- # element.
- bias = bias[None, :] - bias[:, None]
- padded_len = (prompt_len + 7) // 8 * 8
- num_heads = alibi_slopes.shape[0]
- bias = torch.empty(
- 1, # batch size
- num_heads,
- prompt_len,
- padded_len,
- device=alibi_slopes.device,
- dtype=dtype,
- )[:, :, :, :prompt_len].copy_(bias)
- bias.mul_(alibi_slopes[:, None, None])
- if num_heads != num_kv_heads:
- bias = bias.unflatten(1, (num_kv_heads, num_heads // num_kv_heads))
- attn_biases.append(LowerTriangularMaskWithTensorBias(bias))
- return attn_biases
|