1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546 |
- /*
- * Modified by Neural Magic
- * Copyright (C) Marlin.2024 Elias Frantar
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include <torch/all.h>
- #include <ATen/cuda/CUDAContext.h>
- #include <c10/cuda/CUDAGuard.h>
- #include <cuda.h>
- #include <cuda_fp16.h>
- #include <cuda_runtime.h>
- #include <iostream>
- template <typename T>
- inline std::string str(T x) {
- return std::to_string(x);
- }
- namespace marlin_moe {
- constexpr int ceildiv(int a, int b) { return (a + b - 1) / b; }
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
- // Instances of `Vec` are used to organize groups of >>registers<<, as needed
- // for instance as inputs to tensor core operations. Consequently, all
- // corresponding index accesses must be compile-time constants, which is why we
- // extensively use `#pragma unroll` throughout the kernel code to guarantee
- // this.
- template <typename T, int n>
- struct Vec {
- T elems[n];
- __device__ T& operator[](int i) { return elems[i]; }
- };
- using I4 = Vec<int, 4>;
- // Matrix fragments for tensor core instructions; their precise layout is
- // documented here:
- // https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#matrix-fragments-for-mma-m16n8k16-with-floating-point-type
- using FragA = Vec<half2, 4>;
- using FragB = Vec<half2, 2>;
- using FragC = Vec<float, 4>;
- using FragS = Vec<half2, 1>; // quantization scales
- // Predicated asynchronous global->shared copy; used for inputs A where we apply
- // predication to handle batchsizes that are not multiples of 16.
- __device__ inline void cp_async4_pred(void* smem_ptr, const void* glob_ptr,
- bool pred = true) {
- const int BYTES = 16;
- uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
- asm volatile(
- "{\n"
- " .reg .pred p;\n"
- " setp.ne.b32 p, %0, 0;\n"
- " @p cp.async.cg.shared.global [%1], [%2], %3;\n"
- "}\n" ::"r"((int)pred),
- "r"(smem), "l"(glob_ptr), "n"(BYTES));
- }
- // Asynchronous global->shared copy
- __device__ inline void cp_async4(void* smem_ptr, const void* glob_ptr) {
- const int BYTES = 16;
- uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
- asm volatile(
- "{\n"
- " cp.async.cg.shared.global [%0], [%1], %2;\n"
- "}\n" ::"r"(smem),
- "l"(glob_ptr), "n"(BYTES));
- }
- // Async copy fence.
- __device__ inline void cp_async_fence() {
- asm volatile("cp.async.commit_group;\n" ::);
- }
- // Wait until at most `n` async copy stages are still pending.
- template <int n>
- __device__ inline void cp_async_wait() {
- asm volatile("cp.async.wait_group %0;\n" ::"n"(n));
- }
- // m16n8k16 tensor core mma instruction with fp16 inputs and fp32
- // output/accumulation.
- __device__ inline void mma(const FragA& a_frag, const FragB& frag_b,
- FragC& frag_c) {
- const uint32_t* a = reinterpret_cast<const uint32_t*>(&a_frag);
- const uint32_t* b = reinterpret_cast<const uint32_t*>(&frag_b);
- float* c = reinterpret_cast<float*>(&frag_c);
- asm volatile(
- "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 "
- "{%0,%1,%2,%3}, {%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};\n"
- : "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3])
- : "r"(a[0]), "r"(a[1]), "r"(a[2]), "r"(a[3]), "r"(b[0]), "r"(b[1]),
- "f"(c[0]), "f"(c[1]), "f"(c[2]), "f"(c[3]));
- }
- // Instruction for loading a full 16x16 matrix fragment of operand A from shared
- // memory, directly in tensor core layout.
- __device__ inline void ldsm4(FragA& frag_a, const void* smem_ptr) {
- uint32_t* a = reinterpret_cast<uint32_t*>(&frag_a);
- uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
- asm volatile("ldmatrix.sync.aligned.m8n8.x4.shared.b16 {%0,%1,%2,%3}, [%4];\n"
- : "=r"(a[0]), "=r"(a[1]), "=r"(a[2]), "=r"(a[3])
- : "r"(smem));
- }
- // Lookup-table based 3-input logical operation; explicitly used for
- // dequantization as the compiler does not seem to automatically recognize it in
- // all cases.
- template <int lut>
- __device__ inline int lop3(int a, int b, int c) {
- int res;
- asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
- : "=r"(res)
- : "r"(a), "r"(b), "r"(c), "n"(lut));
- return res;
- }
- // Efficiently dequantize an int32 value into a full B-fragment of 4 fp16
- // values. We mostly follow the strategy in the link below, with some small
- // changes:
- // https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h
- __device__ inline FragB dequant(int q) {
- const int LO = 0x000f000f;
- const int HI = 0x00f000f0;
- const int EX = 0x64006400;
- // Guarantee that the `(a & b) | c` operations are LOP3s.
- int lo = lop3<(0xf0 & 0xcc) | 0xaa>(q, LO, EX);
- int hi = lop3<(0xf0 & 0xcc) | 0xaa>(q, HI, EX);
- // We want signed int4 outputs, hence we fuse the `-8` symmetric zero point
- // directly into `SUB` and `ADD`.
- const int SUB = 0x64086408;
- const int MUL = 0x2c002c00;
- const int ADD = 0xd480d480;
- FragB frag_b;
- frag_b[0] = __hsub2(*reinterpret_cast<half2*>(&lo),
- *reinterpret_cast<const half2*>(&SUB));
- frag_b[1] = __hfma2(*reinterpret_cast<half2*>(&hi),
- *reinterpret_cast<const half2*>(&MUL),
- *reinterpret_cast<const half2*>(&ADD));
- return frag_b;
- }
- // Multiply dequantized values by the corresponding quantization scale; used
- // only for grouped quantization.
- __device__ inline void scale(FragB& frag_b, FragS& frag_s, int i) {
- half2 s = __half2half2(reinterpret_cast<__half*>(&frag_s)[i]);
- frag_b[0] = __hmul2(frag_b[0], s);
- frag_b[1] = __hmul2(frag_b[1], s);
- }
- // Given 2 floats multiply by 2 scales (halves)
- __device__ inline void scale_float(float* c, FragS& s) {
- __half* s_ptr = reinterpret_cast<__half*>(&s);
- c[0] = __fmul_rn(c[0], __half2float(s_ptr[0]));
- c[1] = __fmul_rn(c[1], __half2float(s_ptr[1]));
- }
- // Same as above, but for act_order (each K is multiplied individually)
- __device__ inline void scale4(FragB& frag_b, FragS& frag_s_1, FragS& frag_s_2,
- FragS& frag_s_3, FragS& frag_s_4, int i) {
- __half2 s_val_1_2;
- s_val_1_2.x = reinterpret_cast<__half*>(&frag_s_1)[i];
- s_val_1_2.y = reinterpret_cast<__half*>(&frag_s_2)[i];
- __half2 s_val_3_4;
- s_val_3_4.x = reinterpret_cast<__half*>(&frag_s_3)[i];
- s_val_3_4.y = reinterpret_cast<__half*>(&frag_s_4)[i];
- frag_b[0] = __hmul2(frag_b[0], s_val_1_2);
- frag_b[1] = __hmul2(frag_b[1], s_val_3_4);
- }
- // Wait until barrier reaches `count`, then lock for current threadblock.
- __device__ inline void barrier_acquire(int* lock, int count) {
- if (threadIdx.x == 0) {
- int state = -1;
- do
- // Guarantee that subsequent writes by this threadblock will be visible
- // globally.
- asm volatile("ld.global.acquire.gpu.b32 %0, [%1];\n"
- : "=r"(state)
- : "l"(lock));
- while (state != count);
- }
- __syncthreads();
- }
- // Release barrier and increment visitation count.
- __device__ inline void barrier_release(int* lock, bool reset = false) {
- __syncthreads();
- if (threadIdx.x == 0) {
- if (reset) {
- lock[0] = 0;
- return;
- }
- int val = 1;
- // Make sure that all writes since acquiring this barrier are visible
- // globally, while releasing the barrier.
- asm volatile("fence.acq_rel.gpu;\n");
- asm volatile("red.relaxed.gpu.global.add.s32 [%0], %1;\n"
- :
- : "l"(lock), "r"(val));
- }
- }
- // For a given "a" of size [M,K] performs a permutation of the K columns based
- // on the given "perm" indices.
- __global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr,
- int const* __restrict__ perm_int_ptr,
- int4* __restrict__ out_int4_ptr, int size_m,
- int size_k, int block_rows) {
- int start_row = block_rows * blockIdx.x;
- int finish_row = start_row + block_rows;
- if (finish_row > size_m) {
- finish_row = size_m;
- }
- int cur_block_rows = finish_row - start_row;
- int row_stride = size_k * sizeof(half) / 16;
- auto permute_row = [&](int row) {
- int iters = size_k / blockDim.x;
- int rest = size_k % blockDim.x;
- int offset = row * row_stride;
- half const* a_row_half = reinterpret_cast<half const*>(a_int4_ptr + offset);
- half* out_half = reinterpret_cast<half*>(out_int4_ptr + offset);
- int base_k = 0;
- for (int i = 0; i < iters; i++) {
- int cur_k = base_k + threadIdx.x;
- int src_pos = perm_int_ptr[cur_k];
- out_half[cur_k] = a_row_half[src_pos];
- base_k += blockDim.x;
- }
- if (rest) {
- if (threadIdx.x < rest) {
- int cur_k = base_k + threadIdx.x;
- int src_pos = perm_int_ptr[cur_k];
- out_half[cur_k] = a_row_half[src_pos];
- }
- }
- };
- for (int i = 0; i < cur_block_rows; i++) {
- int cur_row = start_row + i;
- if (cur_row < size_m) {
- permute_row(cur_row);
- }
- }
- }
- __global__ void compute_expert_offsets(int const* __restrict__ topk_ids,
- int* __restrict__ expert_offsets,
- int topk_length, int block_size) {
- int expert_id = threadIdx.x;
- int num_experts = blockDim.x;
- int occurrences = 0;
- for (int i = 0; i < topk_length; ++i) {
- occurrences += (topk_ids[i] == expert_id);
- }
- expert_offsets[expert_id + 1] = occurrences;
- __syncthreads();
- if (threadIdx.x == 0) {
- int tot_offset = 0;
- expert_offsets[0] = 0;
- for (int i = 0; i < num_experts; ++i) {
- tot_offset += ceildiv(expert_offsets[i + 1], block_size) * block_size;
- expert_offsets[i + 1] = tot_offset;
- }
- }
- __syncthreads();
- }
- template <const int threads, // number of threads in a threadblock
- const int thread_m_blocks, // number of 16x16 blocks in the m
- // dimension (batchsize) of the
- // threadblock
- const int thread_n_blocks, // same for n dimension (output)
- const int thread_k_blocks, // same for k dimension (reduction)
- const int stages, // number of stages for the async global->shared
- // fetch pipeline
- const bool has_act_order, // whether act_order is enabled
- const int group_blocks = -1 // number of consecutive 16x16 blocks
- // with a separate quantization scale
- >
- __device__ inline void MarlinMoESingle(
- const int4* __restrict__ A, // fp16 input matrix of shape mxk
- const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn
- int4* __restrict__ C, // fp16 output buffer of shape mxn
- const int* __restrict__ sorted_ids, // int32 sorted ids of experts
- const float* __restrict__ topk_weights, // float topk weights
- const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape
- // (k/groupsize)xn
- const int* __restrict__ g_idx, // int32 group indices of shape k
- const int* __restrict__ expert_offsets,
- int num_groups, // number of scale groups per output channel
- int expert_idx, // idx of current expert
- int num_experts, // number of experts
- int topk, // topk parameter of moe
- int prob_m, // batch dimension m
- int prob_n, // output dimension n
- int prob_k, // reduction dimension k
- int tot_m, // total number of rows in A and C
- int* locks, // extra global storage for barrier synchronization
- bool replicate_input, // do we use the same input for each expert?
- bool apply_weights, // apply weights to output
- int current_m_block // current m block to start kernel computation from
- ) {
- // For larger GEMMs we run multiple batchsize 64 versions in parallel for a
- // better partitioning with less reductions
- int parallel = 1;
- if (prob_m > 16 * thread_m_blocks) {
- parallel = prob_m / (16 * thread_m_blocks);
- prob_m = 16 * thread_m_blocks;
- }
- int k_tiles = prob_k / 16 / thread_k_blocks;
- int n_tiles = prob_n / 16 / thread_n_blocks;
- int iters = ceildiv(k_tiles * n_tiles * parallel, gridDim.x);
- if constexpr (!has_act_order && group_blocks != -1) {
- if (group_blocks >= thread_k_blocks) {
- // Ensure that the number of tiles in each stripe is a multiple of the
- // groupsize; this avoids an annoying special case where a stripe starts
- // in the middle of group.
- iters = (group_blocks / thread_k_blocks) *
- ceildiv(iters, (group_blocks / thread_k_blocks));
- }
- }
- int slice_row = (iters * blockIdx.x) % k_tiles;
- int slice_col_par = (iters * blockIdx.x) / k_tiles;
- int slice_col = slice_col_par;
- int slice_iters; // number of threadblock tiles in the current slice
- int slice_count =
- 0; // total number of active threadblocks in the current slice
- int slice_idx; // index of threadblock in current slice; numbered bottom to
- // top
- // We can easily implement parallel problem execution by just remapping
- // indices and advancing global pointers
- if (slice_col_par >= n_tiles) {
- locks += (slice_col_par / n_tiles) * n_tiles;
- slice_col = slice_col_par % n_tiles;
- sorted_ids += (slice_col_par / n_tiles) * 16 * thread_m_blocks;
- }
- // Compute all information about the current slice which is required for
- // synchronization.
- auto init_slice = [&]() {
- slice_iters =
- iters * (blockIdx.x + 1) - (k_tiles * slice_col_par + slice_row);
- if (slice_iters < 0 || slice_col_par >= n_tiles * parallel) slice_iters = 0;
- if (slice_iters == 0) return;
- if (slice_row + slice_iters > k_tiles) slice_iters = k_tiles - slice_row;
- slice_count = 1;
- slice_idx = 0;
- int col_first = iters * ceildiv(k_tiles * slice_col_par, iters);
- if (col_first <= k_tiles * (slice_col_par + 1)) {
- int col_off = col_first - k_tiles * slice_col_par;
- slice_count = ceildiv(k_tiles - col_off, iters);
- if (col_off > 0) slice_count++;
- int delta_first = iters * blockIdx.x - col_first;
- if (delta_first < 0 || (col_off == 0 && delta_first == 0))
- slice_idx = slice_count - 1;
- else {
- slice_idx = slice_count - 1 - delta_first / iters;
- if (col_off > 0) slice_idx--;
- }
- }
- if (slice_col == n_tiles) {
- sorted_ids += 16 * thread_m_blocks;
- locks += n_tiles;
- slice_col = 0;
- }
- };
- init_slice();
- // A sizes/strides
- // stride of the A matrix in global memory
- int a_gl_stride = prob_k / 8;
- // stride of an A matrix tile in shared memory
- constexpr int a_sh_stride = 16 * thread_k_blocks / 8;
- // delta between subsequent A tiles in global memory
- constexpr int a_gl_rd_delta_o = 16 * thread_k_blocks / 8;
- // between subsequent accesses within a tile
- int a_gl_rd_delta_i = a_gl_stride * (threads / a_gl_rd_delta_o);
- // between shared memory writes
- constexpr int a_sh_wr_delta = a_sh_stride * (threads / a_gl_rd_delta_o);
- // between shared memory tile reads
- constexpr int a_sh_rd_delta_o = 2 * ((threads / 32) / (thread_n_blocks / 4));
- // within a shared memory tile
- constexpr int a_sh_rd_delta_i = a_sh_stride * 16;
- // overall size of a tile
- constexpr int a_sh_stage = a_sh_stride * (16 * thread_m_blocks);
- // number of shared write iterations for a tile
- constexpr int a_sh_wr_iters = ceildiv(a_sh_stage, a_sh_wr_delta);
- // B sizes/strides
- int b_gl_stride = 16 * prob_n / 32;
- constexpr int b_sh_stride = 32 * thread_n_blocks / 4;
- int b_gl_rd_delta_o = b_gl_stride * thread_k_blocks;
- int b_gl_rd_delta_i = b_gl_stride * (threads / b_sh_stride);
- constexpr int b_sh_wr_delta = threads;
- constexpr int b_sh_rd_delta = threads;
- constexpr int b_sh_stage = b_sh_stride * thread_k_blocks;
- constexpr int b_sh_wr_iters = b_sh_stage / b_sh_wr_delta;
- // Scale sizes/strides without act_order
- int s_gl_stride = prob_n / 8;
- constexpr int s_sh_stride = 16 * thread_n_blocks / 8;
- constexpr int s_tb_groups = !has_act_order && group_blocks < thread_k_blocks
- ? thread_k_blocks / group_blocks
- : 1;
- constexpr int s_sh_stage = s_tb_groups * s_sh_stride;
- int s_gl_rd_delta = s_gl_stride;
- // Scale size/strides with act_order
- constexpr int tb_k = 16 * thread_k_blocks;
- constexpr int g_idx_stage = has_act_order ? (tb_k * sizeof(int)) / 16 : 0;
- // constexpr int act_s_row_stride = 1;
- // int act_s_col_stride = act_s_row_stride * num_groups;
- int act_s_col_stride = 1;
- int act_s_col_warp_stride = act_s_col_stride * 8;
- int tb_n_warps = thread_n_blocks / 4;
- int act_s_col_tb_stride = act_s_col_warp_stride * tb_n_warps;
- constexpr int sorted_sh_stride = threads;
- constexpr int sorted_gl_stride = threads;
- // Global A read index of current thread.
- int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) +
- (threadIdx.x % a_gl_rd_delta_o);
- a_gl_rd += a_gl_rd_delta_o * slice_row;
- // Shared write index of current thread.
- int a_sh_wr = a_sh_stride * (threadIdx.x / a_gl_rd_delta_o) +
- (threadIdx.x % a_gl_rd_delta_o);
- // Shared read index.
- int a_sh_rd =
- a_sh_stride * ((threadIdx.x % 32) % 16) + (threadIdx.x % 32) / 16;
- a_sh_rd += 2 * ((threadIdx.x / 32) / (thread_n_blocks / 4));
- int b_gl_rd =
- b_gl_stride * (threadIdx.x / b_sh_stride) + (threadIdx.x % b_sh_stride);
- b_gl_rd += b_sh_stride * slice_col;
- b_gl_rd += b_gl_rd_delta_o * slice_row;
- int b_sh_wr = threadIdx.x;
- int b_sh_rd = threadIdx.x;
- // For act_order
- constexpr int k_iter_size = tb_k / b_sh_wr_iters;
- int slice_k_start = tb_k * slice_row;
- int slice_k_finish = slice_k_start + tb_k * slice_iters;
- int slice_k_start_shared_fetch = slice_k_start;
- int slice_n_offset = act_s_col_tb_stride * slice_col;
- // No act_order
- int s_gl_rd;
- if constexpr (group_blocks == -1 || group_blocks == 0) {
- s_gl_rd = s_sh_stride * slice_col + threadIdx.x;
- } else {
- s_gl_rd = s_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) +
- s_sh_stride * slice_col + threadIdx.x;
- }
- int s_sh_wr = threadIdx.x;
- bool s_sh_wr_pred = threadIdx.x < s_sh_stride;
- // We use a different scale layout for grouped and column-wise quantization as
- // we scale a `half2` tile in column-major layout in the former and in
- // row-major in the latter case.
- int s_sh_rd;
- if constexpr (group_blocks != -1)
- s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
- (threadIdx.x % 32) / 4;
- else
- s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
- (threadIdx.x % 32) % 4;
- int sh_first_group_id = -1;
- int sh_num_groups = -1;
- constexpr int sh_max_num_groups = 32;
- int shs_size;
- if constexpr (has_act_order)
- shs_size = sh_max_num_groups * s_sh_stride + threads;
- else
- shs_size = group_blocks > 0 ? stages * s_sh_stage : threads;
- extern __shared__ int4 sh[];
- // Shared memory storage for global fetch pipelines.
- int4* sh_a = sh;
- int4* sh_b = sh_a + (stages * a_sh_stage);
- int4* sh_g_idx = sh_b + (stages * b_sh_stage);
- int4* sh_s = sh_g_idx + (stages * g_idx_stage);
- int* sh_sorted = (int*)(sh_s + shs_size);
- // Precompute which thread should not read memory in which iterations; this is
- // needed if there are more threads than required for a certain tilesize or
- // when the batchsize is not a multiple of 16.
- bool a_sh_wr_pred[a_sh_wr_iters];
- #pragma unroll
- for (int i = 0; i < a_sh_wr_iters; i++) {
- int a_idx = a_sh_wr_delta * i + a_sh_wr;
- int row = a_idx / a_gl_rd_delta_o;
- if (row >= prob_m) {
- a_sh_wr_pred[i] = false;
- } else {
- a_sh_wr_pred[i] = a_sh_wr_delta * i + a_sh_wr < a_sh_stride * prob_m;
- }
- }
- // To ensure that writing and reading A tiles to/from shared memory, the
- // latter in fragment format, is fully bank conflict free, we need to use a
- // rather fancy XOR-based layout. The key here is that neither reads nor
- // writes of the 16-byte `int4` blocks of 8 consecutive threads involve the
- // same shared memory banks. Further, it seems (based on NSight-Compute) that
- // each warp must also write a consecutive memory segment?
- auto transform_a = [&](int i) {
- int row = i / a_gl_rd_delta_o;
- return a_gl_rd_delta_o * row + (i % a_gl_rd_delta_o) ^ row;
- };
- // Since the computation of this remapping is non-trivial and, due to our main
- // loop unrolls, all shared memory accesses are static, we simply precompute
- // both transformed reads and writes.
- int a_sh_wr_trans[a_sh_wr_iters];
- #pragma unroll
- for (int i = 0; i < a_sh_wr_iters; i++)
- a_sh_wr_trans[i] = transform_a(a_sh_wr_delta * i + a_sh_wr);
- int a_sh_rd_trans[b_sh_wr_iters][thread_m_blocks];
- #pragma unroll
- for (int i = 0; i < b_sh_wr_iters; i++) {
- #pragma unroll
- for (int j = 0; j < thread_m_blocks; j++)
- a_sh_rd_trans[i][j] =
- transform_a(a_sh_rd_delta_o * i + a_sh_rd_delta_i * j + a_sh_rd);
- }
- // Since B-accesses have non-constant stride they have to be computed at
- // runtime; we break dependencies between subsequent accesses with a tile by
- // maintining multiple pointers (we have enough registers), a tiny
- // optimization.
- const int4* B_ptr[b_sh_wr_iters];
- #pragma unroll
- for (int i = 0; i < b_sh_wr_iters; i++)
- B_ptr[i] = B + b_gl_rd_delta_i * i + b_gl_rd;
- // Register storage for double buffer of shared memory reads.
- FragA frag_a[2][thread_m_blocks];
- I4 frag_b_quant[2];
- FragC frag_c[thread_m_blocks][4][2];
- FragS frag_s[2][4]; // No act-order
- FragS act_frag_s[2][4][4]; // For act-order
- // Zero accumulators.
- auto zero_accums = [&]() {
- #pragma unroll
- for (int i = 0; i < thread_m_blocks * 4 * 2 * 4; i++)
- reinterpret_cast<float*>(frag_c)[i] = 0;
- };
- auto fetch_scales_to_shared = [&](bool is_async, int first_group_id,
- int last_group_id) {
- sh_first_group_id = first_group_id;
- sh_num_groups = last_group_id - first_group_id + 1;
- if (sh_num_groups < sh_max_num_groups) {
- sh_num_groups = sh_max_num_groups;
- }
- if (sh_first_group_id + sh_num_groups > num_groups) {
- sh_num_groups = num_groups - sh_first_group_id;
- }
- int row_offset = first_group_id * s_gl_stride;
- if (is_async) {
- for (int i = 0; i < sh_num_groups; i++) {
- if (threadIdx.x < s_sh_stride) {
- cp_async4_pred(&sh_s[(i * s_sh_stride) + threadIdx.x],
- &scales_ptr[row_offset + (i * s_gl_stride) +
- slice_n_offset + threadIdx.x]);
- }
- }
- } else {
- for (int i = 0; i < sh_num_groups; i++) {
- if (threadIdx.x < s_sh_stride) {
- sh_s[(i * s_sh_stride) + threadIdx.x] =
- scales_ptr[row_offset + (i * s_gl_stride) + slice_n_offset +
- threadIdx.x];
- }
- }
- }
- };
- // Asynchronously fetch the next A, B and s tile from global to the next
- // shared memory pipeline location.
- auto fetch_to_shared = [&](int pipe, int a_off, bool pred = true) {
- if (pred) {
- int4* sh_a_stage = sh_a + a_sh_stage * pipe;
- #pragma unroll
- for (int i = 0; i < a_sh_wr_iters; i++) {
- int a_idx = a_gl_rd_delta_i * i + a_gl_rd + a_gl_rd_delta_o * a_off;
- int row = a_idx / a_gl_stride;
- int sorted_row =
- replicate_input ? sorted_ids[row] / topk : sorted_ids[row];
- int new_idx = sorted_row * a_gl_stride + a_idx % a_gl_stride;
- if (sorted_row < tot_m * (replicate_input ? 1 : topk) &&
- new_idx < a_gl_stride * tot_m * (replicate_input ? 1 : topk)) {
- cp_async4_pred(&sh_a_stage[a_sh_wr_trans[i]], &A[new_idx],
- a_sh_wr_pred[i]);
- }
- }
- int4* sh_b_stage = sh_b + b_sh_stage * pipe;
- #pragma unroll
- for (int i = 0; i < b_sh_wr_iters; i++) {
- cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr], B_ptr[i]);
- B_ptr[i] += b_gl_rd_delta_o;
- }
- if constexpr (has_act_order) {
- // Fetch g_idx thread-block portion
- int full_pipe = a_off;
- int cur_k = slice_k_start_shared_fetch + tb_k * full_pipe;
- if (cur_k < prob_k && cur_k < slice_k_finish) {
- int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe;
- int4 const* cur_g_idx_stage_ptr =
- reinterpret_cast<int4 const*>(&g_idx[cur_k]);
- if (threadIdx.x < g_idx_stage) {
- cp_async4_pred(&sh_g_idx_stage[threadIdx.x],
- &cur_g_idx_stage_ptr[threadIdx.x]);
- }
- }
- } else {
- if constexpr (group_blocks != -1) {
- int4* sh_s_stage = sh_s + s_sh_stage * pipe;
- if constexpr (group_blocks >= thread_k_blocks) {
- // Only fetch scales if this tile starts a new group
- if (pipe % (group_blocks / thread_k_blocks) == 0) {
- if (s_sh_wr_pred) {
- cp_async4(&sh_s_stage[s_sh_wr], &scales_ptr[s_gl_rd]);
- }
- s_gl_rd += s_gl_rd_delta;
- }
- } else {
- for (int i = 0; i < s_tb_groups; i++) {
- if (s_sh_wr_pred) {
- cp_async4(&sh_s_stage[i * s_sh_stride + s_sh_wr],
- &scales_ptr[s_gl_rd]);
- }
- s_gl_rd += s_gl_rd_delta;
- }
- }
- }
- }
- }
- // Insert a fence even when we are winding down the pipeline to ensure that
- // waiting is also correct at this point.
- cp_async_fence();
- };
- // TODO we are currently hitting illegal memory accesses when fetching
- // sorted_ids to shared data: fix this
- auto fetch_sorted_ids_to_shared = [&]() {
- const int mpt = ceildiv(prob_m, threads);
- for (int i = 0; i < mpt; i++) {
- if ((i * sorted_gl_stride) + threadIdx.x < prob_m) {
- sh_sorted[(i * sorted_sh_stride) + threadIdx.x] =
- sorted_ids[(i * sorted_gl_stride) + threadIdx.x];
- }
- }
- };
- // Wait until the next thread tile has been loaded to shared memory.
- auto wait_for_stage = [&]() {
- // We only have `stages - 2` active fetches since we are double buffering
- // and can only issue the next fetch when it is guaranteed that the previous
- // shared memory load is fully complete (as it may otherwise be
- // overwritten).
- cp_async_wait<stages - 2>();
- __syncthreads();
- };
- // Load the next sub-tile from the current location in the shared memory pipe
- // into the current register buffer.
- auto fetch_to_registers = [&](int k, int pipe) {
- int4* sh_a_stage = sh_a + a_sh_stage * pipe;
- #pragma unroll
- for (int i = 0; i < thread_m_blocks; i++)
- ldsm4(frag_a[k % 2][i], &sh_a_stage[a_sh_rd_trans[k % b_sh_wr_iters][i]]);
- int4* sh_b_stage = sh_b + b_sh_stage * pipe;
- frag_b_quant[k % 2] = *reinterpret_cast<I4*>(
- &sh_b_stage[b_sh_rd_delta * (k % b_sh_wr_iters) + b_sh_rd]);
- };
- bool is_same_group[stages];
- int same_group_id[stages];
- auto init_same_group = [&](int pipe) {
- int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe;
- int* sh_g_idx_int_ptr = reinterpret_cast<int*>(sh_g_idx_stage);
- int group_id_1 = sh_g_idx_int_ptr[0];
- int group_id_2 = sh_g_idx_int_ptr[tb_k - 1];
- is_same_group[pipe] = group_id_1 == group_id_2;
- same_group_id[pipe] = group_id_1;
- };
- auto fetch_scales_to_registers = [&](int k, int full_pipe) {
- int pipe = full_pipe % stages;
- if constexpr (!has_act_order) {
- // No act-order case
- if constexpr (group_blocks != -1) {
- if constexpr (group_blocks >= thread_k_blocks) {
- int4* sh_s_stage =
- sh_s + s_sh_stage * ((group_blocks / thread_k_blocks) *
- (pipe / (group_blocks / thread_k_blocks)));
- reinterpret_cast<int4*>(&frag_s[k % 2])[0] = sh_s_stage[s_sh_rd];
- } else {
- int warp_id = threadIdx.x / 32;
- int n_warps = thread_n_blocks / 4;
- int warp_row = warp_id / n_warps;
- int cur_k = warp_row * 16;
- cur_k += k_iter_size * (k % b_sh_wr_iters);
- int k_blocks = cur_k / 16;
- int cur_group_id = k_blocks / group_blocks;
- int4* sh_s_stage = sh_s + s_sh_stage * pipe;
- reinterpret_cast<int4*>(&frag_s[k % 2])[0] =
- sh_s_stage[s_sh_rd + cur_group_id * s_sh_stride];
- }
- }
- return;
- }
- // Act-order case
- // Determine K of the "current" thread-block
- int cur_k = slice_k_start + tb_k * full_pipe;
- if (cur_k >= prob_k || cur_k >= slice_k_finish) {
- return;
- }
- // Reset (to current thread-block) since we read g_idx portion from the
- // shared memory
- cur_k = 0;
- // Progress to current iteration
- cur_k += k_iter_size * (k % b_sh_wr_iters);
- // Determine "position" inside the thread-block (based on warp and
- // thread-id)
- int warp_id = threadIdx.x / 32;
- int n_warps =
- thread_n_blocks / 4; // Each warp processes 4 16-size tiles over N
- int warp_row = warp_id / n_warps;
- int warp_col = warp_id % n_warps;
- cur_k += warp_row * 16;
- int th_id = threadIdx.x % 32;
- cur_k += (th_id % 4) * 2; // Due to tensor-core layout for fp16 B matrix
- int s_col_shift =
- /*slice_n_offset +*/ (act_s_col_warp_stride * warp_col) +
- (th_id / 4) * act_s_col_stride;
- if (is_same_group[pipe]) {
- if (k % 2 == 0) {
- *(reinterpret_cast<int4*>(&(act_frag_s[k % 2][0][0]))) =
- sh_s[(same_group_id[pipe] - sh_first_group_id) * s_sh_stride +
- s_col_shift];
- } else {
- *(reinterpret_cast<int4*>(&(act_frag_s[k % 2][0][0]))) =
- *(reinterpret_cast<int4*>(&(act_frag_s[(k - 1) % 2][0][0])));
- }
- for (int i = 1; i < 4; i++) {
- *(reinterpret_cast<int4*>(&(act_frag_s[k % 2][i][0]))) =
- *(reinterpret_cast<int4*>(&(act_frag_s[k % 2][0][0])));
- }
- return;
- }
- int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe;
- int* sh_g_idx_int_ptr = reinterpret_cast<int*>(sh_g_idx_stage);
- constexpr int k_frag_offsets[4] = {0, 1, 8,
- 9}; // Tensor core offsets per thread
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- int actual_k = cur_k + k_frag_offsets[i];
- int group_id = sh_g_idx_int_ptr[actual_k];
- int rel_group_id = group_id - sh_first_group_id;
- *(reinterpret_cast<int4*>(&(act_frag_s[k % 2][i][0]))) =
- sh_s[rel_group_id * s_sh_stride + s_col_shift];
- }
- };
- // Execute the actual tensor core matmul of a sub-tile.
- auto matmul = [&](int k) {
- // We have the m dimension as the inner loop in order to encourage overlapping
- // dequantization and matmul operations.
- #pragma unroll
- for (int j = 0; j < 4; j++) {
- int b_quant = frag_b_quant[k % 2][j];
- int b_quant_shift = b_quant >> 8;
- FragB frag_b0 = dequant(b_quant);
- // Apply scale to frag_b0
- if constexpr (has_act_order) {
- scale4(frag_b0, act_frag_s[k % 2][0][j], act_frag_s[k % 2][1][j],
- act_frag_s[k % 2][2][j], act_frag_s[k % 2][3][j], 0);
- } else {
- if constexpr (group_blocks != -1) {
- scale(frag_b0, frag_s[k % 2][j], 0);
- }
- }
- FragB frag_b1 = dequant(b_quant_shift);
- // Apply scale to frag_b1
- if constexpr (has_act_order) {
- scale4(frag_b1, act_frag_s[k % 2][0][j], act_frag_s[k % 2][1][j],
- act_frag_s[k % 2][2][j], act_frag_s[k % 2][3][j], 1);
- } else {
- if constexpr (group_blocks != -1) {
- scale(frag_b1, frag_s[k % 2][j], 1);
- }
- }
- #pragma unroll
- for (int i = 0; i < thread_m_blocks; i++) {
- mma(frag_a[k % 2][i], frag_b0, frag_c[i][j][0]);
- mma(frag_a[k % 2][i], frag_b1, frag_c[i][j][1]);
- }
- }
- };
- // Since we slice across the k dimension of a tile in order to increase the
- // number of warps while keeping the n dimension of a tile reasonable, we have
- // multiple warps that accumulate their partial sums of the same output
- // location; which we have to reduce over in the end. We do in shared memory.
- auto thread_block_reduce = [&]() {
- constexpr int red_off = threads / b_sh_stride / 2;
- if (red_off >= 1) {
- int red_idx = threadIdx.x / b_sh_stride;
- constexpr int red_sh_stride = b_sh_stride * 4 * 2;
- constexpr int red_sh_delta = b_sh_stride;
- int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride) +
- (threadIdx.x % b_sh_stride);
- // Parallel logarithmic shared memory reduction. We make sure to avoid any
- // unnecessary read or write iterations, e.g., for two warps we write only
- // once by warp 1 and read only once by warp 0.
- #pragma unroll
- for (int m_block = 0; m_block < thread_m_blocks; m_block++) {
- #pragma unroll
- for (int i = red_off; i > 0; i /= 2) {
- if (i <= red_idx && red_idx < 2 * i) {
- #pragma unroll
- for (int j = 0; j < 4 * 2; j++) {
- int red_sh_wr =
- red_sh_delta * j + (red_sh_rd - red_sh_stride * i);
- if (i < red_off) {
- float* c_rd =
- reinterpret_cast<float*>(&sh[red_sh_delta * j + red_sh_rd]);
- float* c_wr = reinterpret_cast<float*>(&sh[red_sh_wr]);
- #pragma unroll
- for (int k = 0; k < 4; k++)
- reinterpret_cast<FragC*>(frag_c)[4 * 2 * m_block + j][k] +=
- c_rd[k] + c_wr[k];
- }
- sh[red_sh_wr] =
- reinterpret_cast<int4*>(&frag_c)[4 * 2 * m_block + j];
- }
- }
- __syncthreads();
- }
- if (red_idx == 0) {
- #pragma unroll
- for (int i = 0; i < 4 * 2; i++) {
- float* c_rd =
- reinterpret_cast<float*>(&sh[red_sh_delta * i + red_sh_rd]);
- #pragma unroll
- for (int j = 0; j < 4; j++)
- reinterpret_cast<FragC*>(frag_c)[4 * 2 * m_block + i][j] +=
- c_rd[j];
- }
- }
- __syncthreads();
- }
- }
- };
- // Since multiple threadblocks may process parts of the same column slice, we
- // finally have to globally reduce over the results. As the striped
- // partitioning minimizes the number of such reductions and our outputs are
- // usually rather small, we perform this reduction serially in L2 cache.
- auto global_reduce = [&](bool first = false, bool last = false) {
- // We are very careful here to reduce directly in the output buffer to
- // maximize L2 cache utilization in this step. To do this, we write out
- // results in FP16 (but still reduce with FP32 compute).
- constexpr int active_threads = 32 * thread_n_blocks / 4;
- if (threadIdx.x < active_threads) {
- int c_gl_stride = prob_n / 8;
- int c_gl_wr_delta_o = 8 * c_gl_stride;
- int c_gl_wr_delta_i = 4 * (active_threads / 32);
- int c_gl_wr = c_gl_stride * ((threadIdx.x % 32) / 4) +
- 4 * (threadIdx.x / 32) + threadIdx.x % 4;
- c_gl_wr += (2 * thread_n_blocks) * slice_col;
- constexpr int c_sh_wr_delta = active_threads;
- int c_sh_wr = threadIdx.x;
- int row = (threadIdx.x % 32) / 4;
- if (!first) {
- // Interestingly, doing direct global accesses here really seems to mess up
- // the compiler and lead to slowdowns, hence we also use async-copies even
- // though these fetches are not actually asynchronous.
- #pragma unroll
- for (int i = 0; i < thread_m_blocks * 4; i++) {
- int c_idx =
- c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2);
- int sorted_row = sorted_ids[c_idx / c_gl_stride];
- int new_idx = sorted_row * c_gl_stride + c_idx % c_gl_stride;
- cp_async4_pred(&sh[c_sh_wr + c_sh_wr_delta * i], &C[new_idx],
- sorted_row < tot_m * topk &&
- (8 * (i / 2) + row < prob_m &&
- (i < (thread_m_blocks - 1) * 4 ||
- sorted_ids[8 * (i / 2) + row] < tot_m * topk)));
- }
- cp_async_fence();
- cp_async_wait<0>();
- }
- #pragma unroll
- for (int i = 0; i < thread_m_blocks * 4; i++) {
- if (8 * (i / 2) + row < prob_m &&
- (i < (thread_m_blocks - 1) * 4 ||
- sorted_ids[8 * (i / 2) + row] < tot_m * topk)) {
- if (!first) {
- int4 c_red = sh[c_sh_wr + i * c_sh_wr_delta];
- #pragma unroll
- for (int j = 0; j < 2 * 4; j++) {
- reinterpret_cast<float*>(
- &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)] +=
- __half2float(reinterpret_cast<__half*>(&c_red)[j]);
- }
- }
- if (!last) {
- int4 c;
- #pragma unroll
- for (int j = 0; j < 2 * 4; j++) {
- reinterpret_cast<__half*>(&c)[j] =
- __float2half(reinterpret_cast<float*>(
- &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)]);
- }
- int c_idx =
- c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2);
- int row = sorted_ids[c_idx / c_gl_stride];
- if (row < tot_m * topk) {
- int new_idx = row * c_gl_stride + c_idx % c_gl_stride;
- C[new_idx] = c;
- }
- }
- }
- }
- }
- };
- // Write out the reduce final result in the correct layout. We only actually
- // reshuffle matrix fragments in this step, the reduction above is performed
- // in fragment layout.
- auto write_result = [&]() {
- int c_gl_stride = prob_n / 8;
- constexpr int c_sh_stride = 2 * thread_n_blocks + 1;
- int c_gl_wr_delta = c_gl_stride * (threads / (2 * thread_n_blocks));
- constexpr int c_sh_rd_delta =
- c_sh_stride * (threads / (2 * thread_n_blocks));
- int c_gl_wr = c_gl_stride * (threadIdx.x / (2 * thread_n_blocks)) +
- (threadIdx.x % (2 * thread_n_blocks));
- c_gl_wr += (2 * thread_n_blocks) * slice_col;
- int c_sh_wr =
- (4 * c_sh_stride) * ((threadIdx.x % 32) / 4) + (threadIdx.x % 32) % 4;
- c_sh_wr += 32 * (threadIdx.x / 32);
- int c_sh_rd = c_sh_stride * (threadIdx.x / (2 * thread_n_blocks)) +
- (threadIdx.x % (2 * thread_n_blocks));
- int c_gl_wr_end = c_gl_stride * prob_m;
- // We first reorder in shared memory to guarantee the most efficient final
- // global write patterns
- auto write = [&](int idx, float c0, float c1, FragS& s) {
- half2 res = __halves2half2(__float2half(c0), __float2half(c1));
- // For per-column quantization we finally apply the scale here
- if constexpr (!has_act_order && group_blocks == -1) {
- res = __hmul2(res, s[0]);
- }
- ((half2*)sh)[idx] = res;
- };
- if (threadIdx.x / 32 < thread_n_blocks / 4) {
- #pragma unroll
- for (int i = 0; i < thread_m_blocks; i++) {
- #pragma unroll
- for (int j = 0; j < 4; j++) {
- int wr = c_sh_wr + 8 * j;
- write(wr + (4 * c_sh_stride) * 0 + 0, frag_c[i][j][0][0],
- frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0]);
- write(wr + (4 * c_sh_stride) * 8 + 0, frag_c[i][j][0][2],
- frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0]);
- write(wr + (4 * c_sh_stride) * 0 + 4, frag_c[i][j][1][0],
- frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1]);
- write(wr + (4 * c_sh_stride) * 8 + 4, frag_c[i][j][1][2],
- frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1]);
- }
- c_sh_wr += 16 * (4 * c_sh_stride);
- }
- }
- __syncthreads();
- #pragma unroll
- for (int i = 0;
- i < ceildiv(16 * thread_m_blocks, threads / (2 * thread_n_blocks));
- i++) {
- if (c_gl_wr < c_gl_wr_end) {
- int row = sorted_ids[c_gl_wr / c_gl_stride];
- if (row < tot_m * topk) {
- int off = row * c_gl_stride + c_gl_wr % c_gl_stride;
- if (!apply_weights) {
- C[off] = sh[c_sh_rd];
- } else {
- __half* ctrg = reinterpret_cast<__half*>(&C[off]);
- __half* csrc = reinterpret_cast<__half*>(&sh[c_sh_rd]);
- for (int j = 0; j < 8; ++j) {
- ctrg[j] = __float2half(topk_weights[row] * __half2float(csrc[j]));
- }
- }
- c_gl_wr += c_gl_wr_delta;
- c_sh_rd += c_sh_rd_delta;
- }
- }
- }
- };
- // Start global fetch and register load pipelines.
- auto start_pipes = [&]() {
- // TODO re-enable after fixing this function
- // fetch_sorted_ids_to_shared();
- __syncthreads();
- #pragma unroll
- for (int i = 0; i < stages - 1; i++) {
- if (has_act_order && i == 0) {
- int last_g_idx = slice_k_start + stages * tb_k * 2;
- if (last_g_idx >= prob_k) {
- last_g_idx = prob_k - 1;
- }
- fetch_scales_to_shared(true, g_idx[slice_k_start], g_idx[last_g_idx]);
- }
- fetch_to_shared(i, i, i < slice_iters);
- }
- zero_accums();
- wait_for_stage();
- init_same_group(0);
- fetch_to_registers(0, 0);
- fetch_scales_to_registers(0, 0);
- a_gl_rd += a_gl_rd_delta_o * (stages - 1);
- slice_k_start_shared_fetch += tb_k * (stages - 1);
- };
- if (slice_iters) {
- start_pipes();
- }
- // Main loop.
- while (slice_iters) {
- // We unroll over both the global fetch and the register load pipeline to
- // ensure all shared memory accesses are static. Note that both pipelines
- // have even length meaning that the next iteration will always start at
- // index 0.
- #pragma unroll
- for (int pipe = 0; pipe < stages;) {
- #pragma unroll
- for (int k = 0; k < b_sh_wr_iters; k++) {
- fetch_to_registers(k + 1, pipe % stages);
- fetch_scales_to_registers(k + 1, pipe);
- if (k == b_sh_wr_iters - 2) {
- fetch_to_shared((pipe + stages - 1) % stages, pipe,
- slice_iters >= stages);
- pipe++;
- wait_for_stage();
- init_same_group(pipe % stages);
- }
- matmul(k);
- }
- slice_iters--;
- if (slice_iters == 0) {
- break;
- }
- }
- a_gl_rd += a_gl_rd_delta_o * stages;
- slice_k_start += tb_k * stages;
- slice_k_start_shared_fetch += tb_k * stages;
- if constexpr (has_act_order) {
- int first_group_id = g_idx[slice_k_start];
- int last_g_idx = slice_k_start + stages * tb_k * 2;
- if (last_g_idx >= prob_k) {
- last_g_idx = prob_k - 1;
- }
- int last_group_id = g_idx[last_g_idx];
- if (last_group_id >= sh_first_group_id + sh_num_groups) {
- fetch_scales_to_shared(false, first_group_id, last_group_id);
- __syncthreads();
- }
- }
- // Process results and, if necessary, proceed to the next column slice.
- // While this pattern may not be the most readable, other ways of writing
- // the loop seemed to noticeably worse performance after compilation.
- if (slice_iters == 0) {
- cp_async_wait<0>();
- bool last = slice_idx == slice_count - 1;
- // For per-column scales, we only fetch them here in the final step before
- // write-out
- if constexpr (!has_act_order && group_blocks == -1) {
- if (last) {
- if (s_sh_wr_pred) {
- cp_async4(&sh_s[s_sh_wr], &scales_ptr[s_gl_rd]);
- }
- cp_async_fence();
- }
- }
- thread_block_reduce();
- if constexpr (!has_act_order && group_blocks == -1) {
- if (last) {
- cp_async_wait<0>();
- __syncthreads();
- if (threadIdx.x / 32 < thread_n_blocks / 4) {
- reinterpret_cast<int4*>(&frag_s)[0] = sh_s[s_sh_rd + 0];
- reinterpret_cast<int4*>(&frag_s)[1] = sh_s[s_sh_rd + 4];
- }
- }
- }
- if (slice_count > 1) { // only globally reduce if there is more than one
- // block in a slice
- barrier_acquire(&locks[slice_col], slice_idx);
- global_reduce(slice_idx == 0, last);
- barrier_release(&locks[slice_col], last);
- }
- if (last) // only the last block in a slice actually writes the result
- write_result();
- slice_row = 0;
- slice_col_par++;
- slice_col++;
- init_slice();
- if (slice_iters) {
- a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) +
- (threadIdx.x % a_gl_rd_delta_o);
- #pragma unroll
- for (int i = 0; i < b_sh_wr_iters; i++)
- B_ptr[i] += b_sh_stride - b_gl_rd_delta_o * k_tiles;
- if (slice_col == 0) {
- #pragma unroll
- for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride;
- }
- // Update slice k/n for scales loading
- if constexpr (has_act_order) {
- slice_k_start = tb_k * slice_row;
- slice_k_finish = slice_k_start + tb_k * slice_iters;
- slice_k_start_shared_fetch = slice_k_start;
- slice_n_offset = act_s_col_tb_stride * slice_col;
- } else {
- s_gl_rd = s_sh_stride * slice_col + threadIdx.x;
- }
- start_pipes();
- }
- }
- }
- }
- template <const int threads, // number of threads in a threadblock
- const int thread_m_blocks, // number of 16x16 blocks in the m
- // dimension (batchsize) of the
- // threadblock
- const int thread_n_blocks, // same for n dimension (output)
- const int thread_k_blocks, // same for k dimension (reduction)
- const int stages, // number of stages for the async global->shared
- // fetch pipeline
- const bool has_act_order, // whether act_order is enabled
- const int group_blocks = -1 // number of consecutive 16x16 blocks
- // with a separate quantization scale
- >
- __global__ void MarlinMoE(
- const int4* __restrict__ A, // fp16 input matrix of shape mxk
- const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn
- int4* __restrict__ C, // fp16 output buffer of shape mxn
- const int* __restrict__ sorted_ids_base, // int32 sorted ids of experts
- const float* __restrict__ topk_weights, // float topk weights
- const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape
- // (k/groupsize)xn
- const int* __restrict__ g_idx, // int32 group indices of shape k
- const int* __restrict__ expert_offsets,
- int num_groups, // number of scale groups per output channel
- int expert_idx, // idx of current expert
- int num_experts, // number of experts
- int topk, // topk parameter of moe
- int prob_m, // batch dimension m
- int prob_n, // output dimension n
- int prob_k, // reduction dimension k
- int tot_m, // total number of rows in A and C
- int* locks, // extra global storage for barrier synchronization
- bool replicate_input, // do we use the same input for each expert?
- bool apply_weights, // apply weights to output
- int current_m_block, // current m block to start kernel computation from
- int max_par // maximum parallelism
- ) {
- int m_block_ctr = current_m_block;
- const int* sorted_ids_expert =
- sorted_ids_base + expert_offsets[expert_idx] + m_block_ctr * 4 * max_par;
- int tot_its = expert_offsets[expert_idx + 1] - expert_offsets[expert_idx];
- if (tot_its == 0) {
- return;
- }
- int tot_m_blocks = ceildiv(tot_its, 16);
- int pad = 16 * tot_m_blocks - tot_its;
- if (m_block_ctr >= tot_m_blocks) {
- return;
- }
- int max_block = tot_m_blocks - m_block_ctr;
- prob_m = tot_its - 16 * m_block_ctr;
- int par = 1;
- if (max_block > 4) {
- // Note that parallel > 1 currently only works for inputs without any
- // padding
- par = (16 * max_block - pad) / 64;
- par = min((16 * max_block - pad) / 64, max_par);
- prob_m = 64 * par;
- m_block_ctr += 4 * (par - 1);
- max_block = 4;
- }
- if (max_block == 1) {
- MarlinMoESingle<threads, 1, thread_n_blocks, thread_k_blocks, stages,
- has_act_order, group_blocks>(
- A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx,
- expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m,
- prob_n, prob_k, tot_m, locks, replicate_input, apply_weights,
- current_m_block);
- } else if (max_block == 2) {
- MarlinMoESingle<threads, 2, thread_n_blocks, thread_k_blocks, stages,
- has_act_order, group_blocks>(
- A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx,
- expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m,
- prob_n, prob_k, tot_m, locks, replicate_input, apply_weights,
- current_m_block);
- } else if (max_block == 3) {
- MarlinMoESingle<threads, 3, thread_n_blocks, thread_k_blocks, stages,
- has_act_order, group_blocks>(
- A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx,
- expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m,
- prob_n, prob_k, tot_m, locks, replicate_input, apply_weights,
- current_m_block);
- } else {
- MarlinMoESingle<threads, 4, thread_n_blocks, thread_k_blocks, stages,
- has_act_order, group_blocks>(
- A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx,
- expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m,
- prob_n, prob_k, tot_m, locks, replicate_input, apply_weights,
- current_m_block);
- }
- }
- #else
- __global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr,
- int const* __restrict__ perm_int_ptr,
- int4* __restrict__ out_int4_ptr, int size_m,
- int size_k, int block_rows) {
- // Marlin is not implemented yet for SM < 8.0
- assert(false);
- return;
- }
- __global__ void compute_expert_offsets(int const* __restrict__ topk_ids,
- int* __restrict__ expert_offsets,
- int topk_length, int block_size) {
- // Marlin is not implemented yet for SM < 8.0
- assert(false);
- return;
- }
- template <const int threads, // number of threads in a threadblock
- const int thread_m_blocks, // number of 16x16 blocks in the m
- // dimension (batchsize) of the
- // threadblock
- const int thread_n_blocks, // same for n dimension (output)
- const int thread_k_blocks, // same for k dimension (reduction)
- const int stages, // number of stages for the async global->shared
- // fetch pipeline
- const bool has_act_order, // whether act_order is enabled
- const int group_blocks = -1 // number of consecutive 16x16 blocks
- // with a separate quantization scale
- >
- __global__ void MarlinMoE(
- const int4* __restrict__ A, // fp16 input matrix of shape mxk
- const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn
- int4* __restrict__ C, // fp16 output buffer of shape mxn
- const int* __restrict__ sorted_ids, // int32 sorted ids of experts
- const float* __restrict__ topk_weights, // float topk weights
- const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape
- // (k/groupsize)xn
- const int* __restrict__ g_idx, // int32 group indices of shape k
- const int* __restrict__ expert_offsets,
- int num_groups, // number of scale groups per output channel
- int expert_idx, // idx of current expert
- int num_experts, // number of experts
- int topk, // topk parameter of moe
- int prob_m, // batch dimension m
- int prob_n, // output dimension n
- int prob_k, // reduction dimension k
- int tot_m, // total number of rows in A and C
- int* locks, // extra global storage for barrier synchronization
- bool replicate_input, // do we use the same input for each expert?
- bool apply_weights, // apply weights to output
- int current_m_block, // current m block to start kernel computation from
- int max_par // maximum parallelism
- ) {
- // Marlin is not implemented yet for SM < 8.0
- assert(false);
- return;
- }
- #endif
- // 8 warps are a good choice since every SM has 4 schedulers and having more
- // than 1 warp per schedule allows some more latency hiding. At the same time,
- // we want relatively few warps to have many registers per warp and small tiles.
- const int USER_THREADS =
- 256; // Note: This is only used with user-provided thread_k/n
- const int STAGES = 4; // 4 pipeline stages fit into shared memory
- // const int SHARED_MEM =
- // 96 * 1024; // max shared memory on compute capability 8.6 (< 8.0)
- static constexpr int min_thread_n = 64;
- static constexpr int min_thread_k = 64;
- #define __CALL_IF_MOE(THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
- HAS_ACT_ORDER, GROUP_BLOCKS, NUM_THREADS) \
- else if (thread_m_blocks == THREAD_M_BLOCKS && \
- thread_n_blocks == THREAD_N_BLOCKS && \
- thread_k_blocks == THREAD_K_BLOCKS && \
- has_act_order == HAS_ACT_ORDER && group_blocks == GROUP_BLOCKS && \
- num_threads == NUM_THREADS) { \
- cudaFuncSetAttribute( \
- MarlinMoE<NUM_THREADS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, \
- THREAD_K_BLOCKS, STAGES, HAS_ACT_ORDER, GROUP_BLOCKS>, \
- cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \
- MarlinMoE<NUM_THREADS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
- STAGES, HAS_ACT_ORDER, GROUP_BLOCKS> \
- <<<blocks, NUM_THREADS, max_shared_mem, stream>>>( \
- A_ptr, B_ptr, C_ptr, sorted_ids_ptr, topk_weights_ptr, s_ptr, \
- g_idx_ptr, expert_offsets_ptr, num_groups, expert_idx, \
- num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, \
- replicate_input, apply_weights, m_block, max_par); \
- }
- typedef struct {
- int thread_k;
- int thread_n;
- int num_threads;
- } thread_config_t;
- thread_config_t small_batch_thread_configs[] = {
- // Ordered by priority
- // thread_k, thread_n, num_threads
- {128, 128, 256}, // Default
- {128, 64, 128}, // Reduce N 2X, same K
- {64, 256, 256}, // Reduce K 2X, increase N 2X
- {64, 128, 128}, // Reduce K 2X, same N
- };
- thread_config_t large_batch_thread_configs[] = {
- // Ordered by priority
- // thread_k, thread_n, num_threads
- {64, 256, 256}, // Default
- {128, 128, 256}, // Reduce N 2X, increase K 2X
- {64, 128, 128}, // Reduce N 2X, same K
- {128, 64, 128}, // Reduce N 4X, increase K 2X
- };
- bool is_valid_config(thread_config_t const& th_config, int prob_m, int prob_n,
- int prob_k) {
- // Sanity
- if (th_config.thread_k == -1 || th_config.thread_n == -1 ||
- th_config.num_threads == -1) {
- return false;
- }
- // Verify K/N are divisible by thread K/N
- if (prob_k % th_config.thread_k != 0 || prob_n % th_config.thread_n != 0) {
- return false;
- }
- // thread_k can be only 128 or 64 (because it must be less than groupsize
- // which is 128)
- if (th_config.thread_k != 128 && th_config.thread_k != 64) {
- return false;
- }
- // Verify min for thread K/N
- if (th_config.thread_n < min_thread_n || th_config.thread_k < min_thread_k) {
- return false;
- }
- // num_threads must be at least 128 (= 4 warps)
- if (th_config.num_threads < 128) {
- return false;
- }
- return true;
- }
- thread_config_t determine_thread_config(int prob_m, int prob_n, int prob_k) {
- if (prob_m <= 16) {
- for (auto th_config : small_batch_thread_configs) {
- if (is_valid_config(th_config, prob_m, prob_n, prob_k)) {
- return th_config;
- }
- }
- } else {
- for (auto th_config : large_batch_thread_configs) {
- if (is_valid_config(th_config, prob_m, prob_n, prob_k)) {
- return th_config;
- }
- }
- }
- return thread_config_t{-1, -1, -1};
- }
- #define CALL_IF_MOE(N_BLOCKS, K_BLOCKS, NUM_THREADS) \
- __CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \
- __CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \
- __CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \
- __CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \
- \
- __CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \
- __CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \
- __CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \
- __CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) \
- \
- __CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \
- __CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \
- __CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \
- __CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) \
- \
- __CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \
- __CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \
- __CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \
- __CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) \
- \
- __CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \
- __CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \
- __CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \
- __CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS)
- void marlin_mm_moe_f16i4(const void* A, const void* B, void* C,
- const void* sorted_ids, const void* topk_weights,
- const void* topk_ids, const void* s, const void* g_idx,
- const void* perm, void* a_tmp, void* expert_offsets,
- int prob_m, int prob_n, int prob_k, void* workspace,
- bool has_act_order, bool is_k_full, int num_groups,
- int group_size, int num_experts, int topk,
- int moe_block_size, int dev, cudaStream_t stream,
- int thread_k, int thread_n, int sms, int max_par,
- bool replicate_input, bool apply_weights) {
- TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m,
- ", ", prob_n, ", ", prob_k, "]");
- if (sms == -1) {
- cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, dev);
- }
- // Set thread config
- thread_config_t th_config;
- if (thread_k != -1 && thread_n != -1) {
- // User-defined config
- th_config = thread_config_t{thread_k, thread_n, USER_THREADS};
- } else {
- // Auto config
- th_config = determine_thread_config(prob_m, prob_n, prob_k);
- }
- TORCH_CHECK(is_valid_config(th_config, prob_m, prob_n, prob_k),
- "Invalid thread config: thread_k = " + str(th_config.thread_k) +
- ", thread_n = " + str(th_config.thread_n) +
- ", num_threads = " + str(th_config.num_threads) +
- " for MKN = [" + str(prob_m) + ", " + str(prob_k) + ", " +
- str(prob_n) + "]");
- int num_threads = th_config.num_threads;
- thread_k = th_config.thread_k;
- thread_n = th_config.thread_n;
- int thread_k_blocks = thread_k / 16;
- int thread_n_blocks = thread_n / 16;
- int blocks = sms;
- TORCH_CHECK(prob_n % thread_n == 0, "prob_n = ", prob_n,
- " is not divisible by thread_n = ", thread_n);
- TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k,
- " is not divisible by thread_k = ", thread_k);
- int group_blocks = 0;
- if (has_act_order) {
- if (is_k_full) {
- TORCH_CHECK(group_size != -1);
- group_blocks = group_size / 16;
- TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k,
- " is not divisible by group_blocks = ", group_blocks);
- } else {
- TORCH_CHECK(group_size == 0);
- group_blocks = 0;
- }
- } else {
- if (group_size == -1) {
- group_blocks = -1;
- } else {
- group_blocks = group_size / 16;
- TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k,
- " is not divisible by group_blocks = ", group_blocks);
- }
- }
- int max_shared_mem = 0;
- cudaDeviceGetAttribute(&max_shared_mem,
- cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
- TORCH_CHECK(max_shared_mem > 0);
- int tot_m = prob_m;
- const int* topk_ids_ptr = (const int*)topk_ids;
- int* expert_offsets_ptr = (int*)expert_offsets;
- compute_expert_offsets<<<1, num_experts, 0, stream>>>(
- topk_ids_ptr, expert_offsets_ptr, tot_m * topk, moe_block_size);
- bool do_permute_a = has_act_order;
- // If we have a full K, then we can run the non-act-order version of Marlin
- // (since the weight rows are reordered by increasing group ids, and by
- // having a full K, we have full original groups)
- if (is_k_full) {
- has_act_order = false;
- }
- for (int expert_idx = 0; expert_idx < num_experts; ++expert_idx) {
- const int4* A_ptr = (const int4*)A;
- int4* a_tmp_ptr = (int4*)a_tmp;
- const int4* B_ptr = (const int4*)B + (prob_n * prob_k / 32) * expert_idx;
- int4* C_ptr = (int4*)C;
- const float* topk_weights_ptr = (const float*)topk_weights;
- const int* sorted_ids_ptr = (const int*)sorted_ids;
- const int4* s_ptr =
- (const int4*)s +
- (((group_size == -1 || group_size == 0) ? 1 : prob_k / group_size) *
- prob_n / 8) *
- expert_idx;
- const int* g_idx_ptr = (const int*)g_idx + prob_k * expert_idx;
- const int* perm_ptr = (const int*)perm + prob_k * expert_idx;
- int* locks = (int*)workspace;
- if (do_permute_a) {
- // Permute A columns
- int topk_rows = replicate_input ? tot_m : tot_m * topk;
- int block_rows = ceildiv(topk_rows, blocks);
- permute_cols_kernel<<<blocks, num_threads, 0, stream>>>(
- A_ptr, perm_ptr, a_tmp_ptr, topk_rows, prob_k, block_rows);
- A_ptr = a_tmp_ptr;
- }
- int max_m_blocks = ceildiv(tot_m, 16);
- for (int m_block = 0; m_block < max_m_blocks; m_block += 16) {
- // Define kernel configurations
- // make it max possible value
- int thread_m_blocks = 4;
- if (false) {
- }
- CALL_IF_MOE(16, 4, 256)
- CALL_IF_MOE(8, 8, 256)
- CALL_IF_MOE(8, 4, 128)
- CALL_IF_MOE(4, 8, 128)
- else {
- TORCH_CHECK(false, "Unsupported shapes: MNK = [" + str(prob_m) + ", " +
- str(prob_n) + ", " + str(prob_k) + "]" +
- ", has_act_order = " + str(has_act_order) +
- ", num_groups = " + str(num_groups) +
- ", group_size = " + str(group_size) +
- ", thread_m_blocks = " + str(thread_m_blocks) +
- ", thread_n_blocks = " + str(thread_n_blocks) +
- ", thread_k_blocks = " + str(thread_k_blocks));
- }
- }
- }
- }
- } // namespace marlin_moe
- torch::Tensor marlin_gemm_moe(
- const torch::Tensor& a, const torch::Tensor& b_q_weights,
- const torch::Tensor& sorted_ids, const torch::Tensor& topk_weights,
- const torch::Tensor& topk_ids, const torch::Tensor& b_scales,
- const torch::Tensor& g_idx, const torch::Tensor& perm,
- torch::Tensor& workspace, int64_t size_m, int64_t size_n, int64_t size_k,
- bool is_k_full, int64_t num_experts, int64_t topk, int64_t moe_block_size,
- bool replicate_input, bool apply_weights) {
- int max_par = 4;
- int dev = a.get_device();
- auto options_dtype =
- torch::TensorOptions().dtype(a.dtype()).device(a.device());
- auto options_int =
- torch::TensorOptions().dtype(torch::kInt).device(a.device());
- torch::Tensor c = torch::zeros({size_m, topk, size_n}, options_dtype);
- torch::Tensor a_tmp =
- replicate_input ? torch::zeros({size_m, size_k}, options_dtype)
- : torch::zeros({size_m, topk, size_k}, options_dtype);
- torch::Tensor expert_offsets = torch::empty({num_experts + 1}, options_int);
- // thread_k: `k` size of a thread_tile in `weights` (can usually be left as
- // auto -1)
- int thread_k = -1;
- // thread_n: `n` size of a thread_tile in `weights` (can usually be left as
- // auto -1)
- int thread_n = -1;
- // sms: number of SMs to use for the kernel (can usually be left as auto -1)
- int sms = -1;
- // Detect groupsize and act_order
- int num_groups = -1;
- int group_size = -1;
- bool has_act_order = g_idx.size(1) != 0;
- int b_rank = b_scales.sizes().size();
- TORCH_CHECK(b_rank == 3, "b_scales rank = ", b_rank, " is not 3");
- TORCH_CHECK(b_scales.size(2) == size_n, "b_scales dim 2 = ", b_scales.size(2),
- " is not size_n = ", size_n);
- num_groups = b_scales.size(1);
- if (has_act_order) {
- if (is_k_full) {
- TORCH_CHECK(num_groups > 1, "For act_order, num_groups must be > 1");
- TORCH_CHECK(size_k % num_groups == 0, "size_k = ", size_k,
- ", is not divisible by num_groups = ", num_groups);
- group_size = size_k / num_groups;
- } else {
- group_size = 0;
- }
- } else {
- if (num_groups > 1) {
- TORCH_CHECK(
- size_k % num_groups == 0, "size_k = ", size_k,
- ", is not divisible by b_scales.size(0) = ", b_scales.size(0));
- group_size = size_k / num_groups;
- } else {
- group_size = -1;
- }
- }
- marlin_moe::marlin_mm_moe_f16i4(
- a.data_ptr(), b_q_weights.data_ptr(), c.data_ptr(), sorted_ids.data_ptr(),
- topk_weights.data_ptr(), topk_ids.data_ptr(), b_scales.data_ptr(),
- g_idx.data_ptr(), perm.data_ptr(), a_tmp.data_ptr(),
- expert_offsets.data_ptr(), size_m, size_n, size_k, workspace.data_ptr(),
- has_act_order, is_k_full, num_groups, group_size, num_experts, topk,
- moe_block_size, dev, at::cuda::getCurrentCUDAStream(dev), thread_k,
- thread_n, sms, max_par, replicate_input, apply_weights);
- return c;
- }
|