123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163 |
- """Test model set-up and weight loading for llmcompressor-quantized models.
- Run `pytest tests/quantization/test_compressed_tensors.py`.
- """
- import pytest
- import torch
- from aphrodite.quantization.compressed_tensors.compressed_tensors import ( # noqa: E501
- CompressedTensorsLinearMethod, CompressedTensorsW4A16Sparse24,
- CompressedTensorsW8A8Fp8, CompressedTensorsW8A8Int8,
- CompressedTensorsW8A16Fp8, CompressedTensorsWNA16)
- from aphrodite.quantization.compressed_tensors.utils import QuantizationType
- @pytest.mark.parametrize("model_args", [
- ("nm-testing/tinyllama-oneshot-w8w8-test-static-shape-change", "tensor",
- QuantizationType.INT, 2560),
- ("nm-testing/tinyllama-oneshot-w8-channel-a8-tensor", "channel",
- QuantizationType.INT, 2560),
- ])
- def test_compressed_tensors_w8a8_static_setup(aphrodite_runner, model_args):
- model_path, strategy, quant_type, shape_0 = model_args
- with aphrodite_runner(model_path, enforce_eager=True) as llm:
- model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501
- layer = model.model.layers[0]
- qkv_proj = layer.self_attn.qkv_proj
- o_proj = layer.self_attn.o_proj
- gate_up_proj = layer.mlp.gate_up_proj
- down_proj = layer.mlp.down_proj
- assert isinstance(qkv_proj.quant_method, CompressedTensorsLinearMethod)
- assert isinstance(o_proj.quant_method, CompressedTensorsLinearMethod)
- assert isinstance(gate_up_proj.quant_method,
- CompressedTensorsLinearMethod)
- assert isinstance(down_proj.quant_method,
- CompressedTensorsLinearMethod)
- assert isinstance(qkv_proj.scheme, CompressedTensorsW8A8Int8)
- assert qkv_proj.scheme.strategy == strategy
- assert qkv_proj.scheme.is_static_input_scheme
- expected_type = torch.int8
- assert qkv_proj.weight.dtype is expected_type
- assert o_proj.weight.dtype is expected_type
- assert gate_up_proj.weight.dtype is expected_type
- if qkv_proj.scheme.strategy == "tensor":
- # Make sure it is a channelwise buffer
- # After running process_weights_after_loading
- assert len(qkv_proj.weight_scale.shape) == 2
- assert qkv_proj.weight_scale.shape[0] == shape_0
- assert qkv_proj.weight_scale.shape[1] == 1
- assert qkv_proj.weight_scale.dtype is torch.float32
- assert qkv_proj.input_scale.dtype is torch.float32
- output = llm.generate_greedy("Hello my name is", max_tokens=20)
- assert output
- def test_compressed_tensors_no_enforce_eager(aphrodite_runner):
- model_path = "nm-testing/tinyllama-oneshot-w8w8-test-static-shape-change"
- with aphrodite_runner(model_path) as llm:
- output = llm.generate_greedy("Hello my name is", max_tokens=20)
- assert output
- @pytest.mark.parametrize("model_args", [
- ("nm-testing/tinyllama-oneshot-w8a8-dynamic-token-v2", "tensor"),
- ("nm-testing/tinyllama-oneshot-w8a8-channel-dynamic-token-v2", "channel"),
- ])
- def test_compressed_tensors_w8a8_dynanmic_per_token(aphrodite_runner,
- model_args):
- model_path, strategy = model_args
- with aphrodite_runner(model_path, dtype=torch.float16) as llm:
- model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501
- layer = model.model.layers[0]
- qkv_proj = layer.self_attn.qkv_proj
- assert isinstance(qkv_proj.quant_method, CompressedTensorsLinearMethod)
- assert isinstance(qkv_proj.scheme, CompressedTensorsW8A8Int8)
- assert not qkv_proj.scheme.is_static_input_scheme
- assert qkv_proj.scheme.strategy == strategy
- assert qkv_proj.weight.dtype is torch.int8
- output = llm.generate_greedy("Hello my name is", max_tokens=20)
- assert output
- @pytest.mark.parametrize(
- "wNa16_args",
- [("nm-testing/tinyllama-oneshot-w4a16-channel-v2", "channel", None, 8),
- ("nm-testing/tinyllama-oneshot-w4a16-group128-v2", "group", 128, 8),
- ("nm-testing/tinyllama-oneshot-w8a16-per-channel", "channel", None, 4)])
- def test_compressed_tensors_wNa16(aphrodite_runner, wNa16_args):
- model, strategy, group, pack_factor = wNa16_args
- with aphrodite_runner(model) as llm:
- model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501
- layer = model.model.layers[0]
- qkv_proj = layer.self_attn.qkv_proj
- assert isinstance(qkv_proj.quant_method, CompressedTensorsLinearMethod)
- assert isinstance(qkv_proj.scheme, CompressedTensorsWNA16)
- assert qkv_proj.scheme.strategy == strategy
- assert qkv_proj.scheme.group_size == (-1 if group is None else group)
- assert qkv_proj.weight_packed.dtype is torch.int32
- assert qkv_proj.weight_scale.dtype is torch.float16
- assert qkv_proj.scheme.pack_factor == pack_factor
- output = llm.generate_greedy("Hello my name is", max_tokens=20)
- assert output
- def test_compressed_tensors_w4a16_marlin24(aphrodite_runner):
- model_path = "nm-testing/llama7b-one-shot-2_4-w4a16-marlin24-t"
- with aphrodite_runner(model_path) as llm:
- model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501
- layer = model.model.layers[0]
- qkv_proj = layer.self_attn.qkv_proj
- assert isinstance(qkv_proj.quant_method, CompressedTensorsLinearMethod)
- assert isinstance(qkv_proj.scheme, CompressedTensorsW4A16Sparse24)
- assert qkv_proj.weight_packed.dtype is torch.int32
- output = llm.generate_greedy("Hello my name is", max_tokens=20)
- assert output
- def test_compressed_tensors_fp8(aphrodite_runner):
- model_path = "nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test"
- with aphrodite_runner(model_path) as llm:
- model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501
- layer = model.model.layers[0]
- qkv_proj = layer.self_attn.qkv_proj
- assert isinstance(qkv_proj.quant_method, CompressedTensorsLinearMethod)
- assert isinstance(
- qkv_proj.scheme,
- (CompressedTensorsW8A8Fp8, CompressedTensorsW8A16Fp8))
- assert qkv_proj.input_scale.dtype is torch.float32
- if isinstance(qkv_proj.scheme, CompressedTensorsW8A8Fp8):
- assert len(qkv_proj.input_scale.shape) == 0
- assert qkv_proj.weight.dtype is torch.float8_e4m3fn
- assert qkv_proj.weight_scale.dtype is torch.float32
- assert len(qkv_proj.weight_scale.shape) == 0
- output = llm.generate_greedy("Hello my name is", max_tokens=20)
- assert output
- def test_compressed_tensors_kv_cache(aphrodite_runner):
- model_path = "nm-testing/TinyLlama-1.1B-compressed-tensors-kv-cache-scheme"
- with aphrodite_runner(model_path, kv_cache_dtype="fp8") as llm:
- output = llm.generate_greedy("Hello world!", max_tokens=20)
- assert output
|