test_chatglm3.py 3.1 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859
  1. from typing import List
  2. import aphrodite
  3. from aphrodite.lora.request import LoRARequest
  4. MODEL_PATH = "THUDM/chatglm3-6b"
  5. PROMPT_TEMPLATE = """I want you to act as a SQL terminal in front of an example database, you need only to return the sql command to me.Below is an instruction that describes a task, Write a response that appropriately completes the request.\n"\n##Instruction:\nconcert_singer contains tables such as stadium, singer, concert, singer_in_concert. Table stadium has columns such as Stadium_ID, Location, Name, Capacity, Highest, Lowest, Average. Stadium_ID is the primary key.\nTable singer has columns such as Singer_ID, Name, Country, Song_Name, Song_release_year, Age, Is_male. Singer_ID is the primary key.\nTable concert has columns such as concert_ID, concert_Name, Theme, Stadium_ID, Year. concert_ID is the primary key.\nTable singer_in_concert has columns such as concert_ID, Singer_ID. concert_ID is the primary key.\nThe Stadium_ID of concert is the foreign key of Stadium_ID of stadium.\nThe Singer_ID of singer_in_concert is the foreign key of Singer_ID of singer.\nThe concert_ID of singer_in_concert is the foreign key of concert_ID of concert.\n\n###Input:\n{query}\n\n###Response:""" # noqa: E501
  6. def do_sample(llm: aphrodite.LLM, lora_path: str, lora_id: int) -> List[str]:
  7. prompts = [
  8. PROMPT_TEMPLATE.format(query="How many singers do we have?"),
  9. PROMPT_TEMPLATE.format(
  10. query=
  11. "What is the average, minimum, and maximum age of all singers from France?" # noqa: E501
  12. ),
  13. PROMPT_TEMPLATE.format(
  14. query=
  15. "Show name, country, age for all singers ordered by age from the oldest to the youngest." # noqa: E501
  16. ),
  17. ]
  18. print(prompts)
  19. sampling_params = aphrodite.SamplingParams(temperature=0, max_tokens=32)
  20. outputs = llm.generate(
  21. prompts,
  22. sampling_params,
  23. lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
  24. if lora_id else None)
  25. # Print the outputs.
  26. generated_texts: List[str] = []
  27. for output in outputs:
  28. prompt = output.prompt
  29. generated_text = output.outputs[0].text.strip()
  30. generated_texts.append(generated_text)
  31. print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
  32. return generated_texts
  33. def test_chatglm3_lora(chatglm3_lora_files):
  34. llm = aphrodite.LLM(MODEL_PATH,
  35. max_model_len=1024,
  36. enable_lora=True,
  37. max_loras=4,
  38. max_lora_rank=64,
  39. trust_remote_code=True)
  40. expected_lora_output = [
  41. "SELECT count(*) FROM singer",
  42. "SELECT avg(age) , min(age) , max(age) FROM singer WHERE country = 'France'", # noqa: E501
  43. "SELECT name , country , age FROM singer ORDER BY age",
  44. ]
  45. output1 = do_sample(llm, chatglm3_lora_files, lora_id=1)
  46. for i in range(len(expected_lora_output)):
  47. assert output1[i] == expected_lora_output[i]
  48. output2 = do_sample(llm, chatglm3_lora_files, lora_id=2)
  49. for i in range(len(expected_lora_output)):
  50. assert output2[i] == expected_lora_output[i]