123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- from typing import List
- import pytest
- import aphrodite
- from aphrodite.lora.request import LoRARequest
- from .conftest import cleanup
- MODEL_PATH = "baichuan-inc/Baichuan-7B"
- PROMPT_TEMPLATE = """I want you to act as a SQL terminal in front of an example database, you need only to return the sql command to me.Below is an instruction that describes a task, Write a response that appropriately completes the request.\n"\n##Instruction:\nconcert_singer contains tables such as stadium, singer, concert, singer_in_concert. Table stadium has columns such as Stadium_ID, Location, Name, Capacity, Highest, Lowest, Average. Stadium_ID is the primary key.\nTable singer has columns such as Singer_ID, Name, Country, Song_Name, Song_release_year, Age, Is_male. Singer_ID is the primary key.\nTable concert has columns such as concert_ID, concert_Name, Theme, Stadium_ID, Year. concert_ID is the primary key.\nTable singer_in_concert has columns such as concert_ID, Singer_ID. concert_ID is the primary key.\nThe Stadium_ID of concert is the foreign key of Stadium_ID of stadium.\nThe Singer_ID of singer_in_concert is the foreign key of Singer_ID of singer.\nThe concert_ID of singer_in_concert is the foreign key of concert_ID of concert.\n\n###Input:\n{query}\n\n###Response:""" # noqa: E501
- def do_sample(llm: aphrodite.LLM, lora_path: str, lora_id: int) -> List[str]:
- prompts = [
- PROMPT_TEMPLATE.format(query="How many singers do we have?"),
- PROMPT_TEMPLATE.format(
- query=
- "What is the average, minimum, and maximum age of all singers from France?" # noqa: E501
- ),
- PROMPT_TEMPLATE.format(
- query=
- "Show name, country, age for all singers ordered by age from the oldest to the youngest." # noqa: E501
- ),
- ]
- print(prompts)
- sampling_params = aphrodite.SamplingParams(temperature=0, max_tokens=256)
- outputs = llm.generate(
- prompts,
- sampling_params,
- lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
- if lora_id else None)
- # Print the outputs.
- generated_texts: List[str] = []
- for output in outputs:
- prompt = output.prompt
- generated_text = output.outputs[0].text.strip()
- generated_texts.append(generated_text)
- print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
- return generated_texts
- def test_baichuan_lora(baichuan_lora_files):
- llm = aphrodite.LLM(MODEL_PATH,
- max_model_len=1024,
- enable_lora=True,
- max_loras=4,
- max_lora_rank=64,
- trust_remote_code=True)
- expected_lora_output = [
- "SELECT count(*) FROM singer",
- "SELECT avg(age) , min(age) , max(age) FROM singer WHERE Country = 'France'", # noqa: E501
- "SELECT name , country , age FROM singer ORDER BY age ASC",
- ]
- output1 = do_sample(llm, baichuan_lora_files, lora_id=1)
- for i in range(len(expected_lora_output)):
- assert output1[i] == expected_lora_output[i]
- output2 = do_sample(llm, baichuan_lora_files, lora_id=2)
- for i in range(len(expected_lora_output)):
- assert output2[i] == expected_lora_output[i]
- @pytest.mark.skip("Requires multiple GPUs")
- @pytest.mark.parametrize("fully_sharded", [True, False])
- def test_baichuan_tensor_parallel_equality(baichuan_lora_files, fully_sharded):
- # Cannot use as it will initialize torch.cuda too early...
- # if torch.cuda.device_count() < 4:
- # pytest.skip(f"Not enough GPUs for tensor parallelism {4}")
- llm_tp1 = aphrodite.LLM(MODEL_PATH,
- enable_lora=True,
- max_num_seqs=16,
- max_loras=4,
- max_lora_rank=64,
- tensor_parallel_size=1,
- trust_remote_code=True,
- fully_sharded_loras=fully_sharded)
- output_tp1 = do_sample(llm_tp1, baichuan_lora_files, lora_id=1)
- del llm_tp1
- cleanup()
- llm_tp2 = aphrodite.LLM(MODEL_PATH,
- enable_lora=True,
- max_num_seqs=16,
- max_loras=4,
- max_lora_rank=64,
- tensor_parallel_size=2,
- trust_remote_code=True,
- fully_sharded_loras=fully_sharded)
- output_tp2 = do_sample(llm_tp2, baichuan_lora_files, lora_id=2)
- del llm_tp2
- cleanup()
- assert output_tp1 == output_tp2
- llm_tp4 = aphrodite.LLM(MODEL_PATH,
- enable_lora=True,
- max_num_seqs=16,
- max_loras=4,
- max_lora_rank=64,
- tensor_parallel_size=4,
- trust_remote_code=True,
- fully_sharded_loras=fully_sharded)
- output_tp4 = do_sample(llm_tp4, baichuan_lora_files, lora_id=2)
- del llm_tp4
- cleanup()
- assert output_tp1 == output_tp4
|