123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687 |
- import pytest
- import torch
- import aphrodite._custom_ops as ops
- from tests.kernels.quant_utils import (FP8_DTYPE,
- ref_dynamic_per_tensor_fp8_quant,
- ref_dynamic_per_token_quant)
- DTYPES = [torch.half, torch.bfloat16, torch.float]
- HIDDEN_SIZES = [1, 2, 3, 4, 16, 67, 768, 2048, 5120, 5137, 8192,
- 8193] # Arbitrary values for testing
- HIDDEN_SIZES += list(range(1024, 1033)) # vectorized conversion edge cases
- NUM_TOKENS = [1, 7, 83, 4096] # Arbitrary values for testing
- SCALE_UBS = [True, False]
- SEEDS = [0]
- @pytest.mark.parametrize("num_tokens", NUM_TOKENS)
- @pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
- @pytest.mark.parametrize("dtype", DTYPES)
- @pytest.mark.parametrize("scale_ub", SCALE_UBS)
- @pytest.mark.parametrize("seed", SEEDS)
- @torch.inference_mode()
- def test_dynamic_per_token_fp8_quant(num_tokens: int, hidden_size: int,
- dtype: torch.dtype, scale_ub: bool,
- seed: int) -> None:
- torch.random.manual_seed(seed)
- torch.cuda.manual_seed(seed)
- x = torch.rand(num_tokens, hidden_size, dtype=dtype,
- device="cuda") + 1e-6 # avoid nans
- scale_ub = torch.mean(x).to(dtype=torch.float32, device='cuda') \
- if scale_ub else None
- ref_out, ref_scales = ref_dynamic_per_token_quant(x, FP8_DTYPE, scale_ub)
- ops_out, ops_scales = ops.scaled_fp8_quant(x,
- scale_ub=scale_ub,
- use_per_token_if_dynamic=True)
- torch.testing.assert_close(ref_scales, ops_scales)
- torch.testing.assert_close(ref_out.to(dtype=torch.float32),
- ops_out.to(dtype=torch.float32))
- @pytest.mark.parametrize("num_tokens", NUM_TOKENS)
- @pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
- @pytest.mark.parametrize("dtype", DTYPES)
- @pytest.mark.parametrize("seed", SEEDS)
- @torch.inference_mode()
- def test_dynamic_per_tensor_fp8_quant(num_tokens: int, hidden_size: int,
- dtype: torch.dtype, seed: int) -> None:
- torch.random.manual_seed(seed)
- torch.cuda.manual_seed(seed)
- x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda")
- ref_out, ref_scale = ref_dynamic_per_tensor_fp8_quant(x)
- ops_out, ops_scale = ops.scaled_fp8_quant(x)
- torch.testing.assert_close(ref_scale, ops_scale)
- torch.testing.assert_close(ref_out.to(dtype=torch.float32),
- ops_out.to(dtype=torch.float32))
- # Regression test for a case with large activations where an int32 index cannot
- # represent the number of elements.
- @torch.inference_mode()
- @pytest.mark.parametrize("seed", SEEDS)
- def test_fp8_quant_large(seed: int) -> None:
- torch.random.manual_seed(seed)
- torch.cuda.manual_seed(seed)
- num_tokens = 1024000 # Mistral-Nemo's max_position_embeddings
- hidden_size = 1152 # Smallest hidden_size to reproduce the error
- dtype = torch.bfloat16
- x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda")
- ref_out, scale = ref_dynamic_per_tensor_fp8_quant(x)
- ops_out, _ = ops.scaled_fp8_quant(x, scale)
- # Minimize memory footprint in this test by freeing x and upconverting
- # the outputs in place. (torch.allclose does not support fp8)
- del x
- ref_out = ref_out.to(dtype=dtype)
- ops_out = ops_out.to(dtype=dtype)
- torch.testing.assert_close(ref_out, ops_out)
|