1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- from typing import Optional, Tuple, Union
- import torch
- from aphrodite.common.utils import is_hip
- # Using the default value (240.0) from pytorch will cause accuracy
- # issue on dynamic quantization models. Here use 224.0 for rocm.
- ROCM_FP8_MAX = 224.0
- FP8_DTYPE = torch.float8_e4m3fnuz if is_hip() else torch.float8_e4m3fn
- def as_float32_tensor(x: Union[float, torch.tensor]) -> torch.tensor:
- return torch.as_tensor(x, dtype=torch.float32, device='cuda')
- def ref_dynamic_per_token_quant(x: torch.tensor,
- quant_dtype: torch.dtype,
- scale_ub: Optional[torch.tensor] = None) \
- -> Tuple[torch.tensor, torch.tensor]:
- assert quant_dtype in [torch.int8, FP8_DTYPE]
- if scale_ub is not None:
- assert quant_dtype == FP8_DTYPE
- qtype_traits = torch.iinfo(quant_dtype) if quant_dtype == torch.int8 \
- else torch.finfo(quant_dtype)
- qtype_traits_max = ROCM_FP8_MAX if is_hip() else qtype_traits.max
- qtype_traits_min = -ROCM_FP8_MAX if is_hip() else qtype_traits.min
- qtype_max = as_float32_tensor(qtype_traits_max)
- s_1 = as_float32_tensor(1.0)
- s_512 = as_float32_tensor(512.0)
- # For fp8, in order to match the cuda kernel output, we have to do exactly
- # the same operations as in the corresponding fp8 kernel to prevent
- # rounding errors.
- # Compute scales
- x_token_max, _ = x.abs().max(dim=-1)
- x_token_max = as_float32_tensor(x_token_max)
- if scale_ub is not None:
- x_token_max = x_token_max.clamp(max=scale_ub)
- scales = (x_token_max / qtype_max)[:, None]
- # Quant
- if quant_dtype == torch.int8:
- iscales = as_float32_tensor(s_1 / scales)
- torch_out = as_float32_tensor(x) * iscales
- torch_out = torch_out.round()
- torch_out = torch_out.clamp(qtype_traits_min,
- qtype_traits_max).to(quant_dtype)
- else:
- assert quant_dtype == FP8_DTYPE
- min_scaling_factor = s_1 / (qtype_max * s_512)
- scales = scales.clamp(min=min_scaling_factor)
- torch_out = as_float32_tensor(x) / scales
- torch_out = torch_out.clamp(qtype_traits_min,
- qtype_traits_max).to(quant_dtype)
- return torch_out, scales
- # The int8 version is very similar. Incorporate the int8 version, like in
- # ref_dynamic_per_token_quant, when we have a dynamic_per_tensor int8 quant
- # kernel
- def ref_dynamic_per_tensor_fp8_quant(x: torch.tensor) \
- -> Tuple[torch.tensor, torch.tensor]:
- fp8_traits = torch.finfo(FP8_DTYPE)
- fp8_traits_max = ROCM_FP8_MAX if is_hip() else fp8_traits.max
- fp8_traits_min = -ROCM_FP8_MAX if is_hip() else fp8_traits.min
- fp8_max = as_float32_tensor(fp8_traits_max)
- one = as_float32_tensor(1.0)
- # For fp8, in order to match the cuda kernel output, we have to do exactly
- # the same operations as in the corresponding fp8 kernel to prevent
- # rounding errors.
- x_max = as_float32_tensor(x.abs().max())
- ref_scale = x_max / fp8_max
- ref_iscale = one / ref_scale
- ref_out = (as_float32_tensor(x) * ref_iscale).clamp(
- fp8_traits_min, fp8_traits_max).to(FP8_DTYPE)
- return ref_out, ref_scale.view((1, ))
|