123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398 |
- /*
- * Copyright (c) 2024 by PygmalionAI team.
- * Copyright (c) 2024 by FlashInfer team.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #ifndef APHRODITE_SAMPLING_CUH_
- #define APHRODITE_SAMPLING_CUH_
- #include <cub/block/block_adjacent_difference.cuh>
- #include <cub/block/block_reduce.cuh>
- #include <cub/block/block_scan.cuh>
- #include <numeric>
- #include "math.cuh"
- #include "utils.cuh"
- #include "vec_dtypes.cuh"
- namespace aphrodite {
- namespace sampling {
- using namespace cub;
- #define DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, ...) \
- if (deterministic) { \
- constexpr bool DETERMINISTIC = true; \
- __VA_ARGS__ \
- } else { \
- constexpr bool DETERMINISTIC = false; \
- __VA_ARGS__ \
- }
- constexpr BlockScanAlgorithm SCAN_ALGO = BLOCK_SCAN_WARP_SCANS;
- constexpr BlockReduceAlgorithm REDUCE_ALGO = BLOCK_REDUCE_WARP_REDUCTIONS;
- #if (__CUDACC_VER_MAJOR__ * 10000 + __CUDACC_VER_MINOR__ * 100 >= 120100)
- #define APHRODITE_CUB_SUBTRACTLEFT_DEFINED
- #endif
- template <typename T>
- struct Pair {
- T value;
- int count;
- __device__ Pair operator+(const Pair& other) const {
- return {value + other.value, count + other.count};
- }
- __device__ Pair& operator+=(const Pair& other) {
- value += other.value;
- count += other.count;
- return *this;
- }
- };
- struct BoolDiffOp {
- __device__ __forceinline__ bool operator()(const bool& lhs,
- const bool& rhs) const {
- return lhs != rhs;
- }
- };
- template <typename T, uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
- BlockReduceAlgorithm REDUCE_ALGORITHM>
- struct SamplingTempStorage {
- union {
- T deterministic_scan[BLOCK_THREADS / 32];
- typename BlockScan<T, BLOCK_THREADS, SCAN_ALGORITHM>::TempStorage scan;
- typename BlockReduce<T, BLOCK_THREADS, REDUCE_ALGORITHM>::TempStorage
- reduce;
- typename BlockReduce<Pair<T>, BLOCK_THREADS, REDUCE_ALGORITHM>::TempStorage
- reduce_pair;
- typename BlockAdjacentDifference<bool, BLOCK_THREADS>::TempStorage adj_diff;
- } block_prim;
- struct {
- int32_t sampled_id;
- union {
- T value;
- Pair<T> pair;
- T max_p;
- } block_aggregate;
- } data;
- };
- /*!
- * \brief Deterministic inclusive scan implementation, use Belloch scan
- * algorithm. \note This implementation is slower than the cub::BlockScan, but
- * it is deterministic.
- */
- template <uint32_t VEC_SIZE, uint32_t BLOCK_THREADS,
- BlockScanAlgorithm SCAN_ALGORITHM,
- BlockReduceAlgorithm REDUCE_ALGORITHM, typename T>
- __device__ __forceinline__ void DeterministicInclusiveSum(
- const T* in_data, T* out_data,
- SamplingTempStorage<T, BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>*
- temp_storage) {
- T* smem_prefix_sum = temp_storage->block_prim.deterministic_scan;
- T thread_data[VEC_SIZE];
- T thread_sum = 0;
- #pragma unroll
- for (uint32_t i = 0; i < VEC_SIZE; ++i) {
- thread_sum += in_data[i];
- thread_data[i] = thread_sum;
- }
- T thread_exclusive_prefix_sum = thread_sum;
- #pragma unroll
- for (uint32_t offset = 1; offset < 32; offset *= 2) {
- T tmp = __shfl_up_sync(0xffffffff, thread_exclusive_prefix_sum, offset);
- if ((threadIdx.x + 1) % (offset * 2) == 0) {
- thread_exclusive_prefix_sum += tmp;
- }
- }
- T warp_sum = __shfl_sync(0xffffffff, thread_exclusive_prefix_sum,
- threadIdx.x | 0xffffffff);
- if (threadIdx.x % 32 == 31) {
- thread_exclusive_prefix_sum = 0;
- }
- #pragma unroll
- for (uint32_t offset = 16; offset >= 1; offset /= 2) {
- T tmp = __shfl_xor_sync(0xffffffff, thread_exclusive_prefix_sum, offset);
- if ((threadIdx.x + 1) % (offset * 2) == 0) {
- thread_exclusive_prefix_sum = tmp + thread_exclusive_prefix_sum;
- }
- if ((threadIdx.x + 1) % (offset * 2) == offset) {
- thread_exclusive_prefix_sum = tmp;
- }
- }
- smem_prefix_sum[threadIdx.x / 32] = warp_sum;
- __syncthreads();
- if (threadIdx.x < 32) {
- T warp_exclusive_prefix_sum =
- (threadIdx.x < BLOCK_THREADS / 32) ? smem_prefix_sum[threadIdx.x] : 0;
- #pragma unroll
- for (uint32_t offset = 1; offset < 32; offset *= 2) {
- T tmp = __shfl_up_sync(0xffffffff, warp_exclusive_prefix_sum, offset);
- if ((threadIdx.x + 1) % (offset * 2) == 0) {
- warp_exclusive_prefix_sum += tmp;
- }
- }
- if (threadIdx.x % 32 == 31) {
- warp_exclusive_prefix_sum = 0;
- }
- #pragma unroll
- for (uint32_t offset = 16; offset >= 1; offset /= 2) {
- T tmp = __shfl_xor_sync(0xffffffff, warp_exclusive_prefix_sum, offset);
- if ((threadIdx.x + 1) % (offset * 2) == 0) {
- warp_exclusive_prefix_sum = tmp + warp_exclusive_prefix_sum;
- }
- if ((threadIdx.x + 1) % (offset * 2) == offset) {
- warp_exclusive_prefix_sum = tmp;
- }
- }
- if (threadIdx.x < BLOCK_THREADS / 32) {
- smem_prefix_sum[threadIdx.x] = warp_exclusive_prefix_sum;
- }
- }
- __syncthreads();
- #pragma unroll
- for (uint32_t i = 0; i < VEC_SIZE; ++i) {
- out_data[i] = smem_prefix_sum[threadIdx.x / 32] +
- thread_exclusive_prefix_sum + thread_data[i];
- }
- }
- template <uint32_t VEC_SIZE, uint32_t BLOCK_THREADS,
- BlockScanAlgorithm SCAN_ALGORITHM,
- BlockReduceAlgorithm REDUCE_ALGORITHM, bool DETERMINISTIC, typename T>
- __device__ __forceinline__ void DeviceSamplingFromProb(
- uint32_t i, uint32_t d, T threshold, T u, vec_t<T, VEC_SIZE> prob_vec,
- T& aggregate,
- SamplingTempStorage<T, BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>*
- temp_storage) {
- const uint32_t tx = threadIdx.x;
- T prob_greater_than_threshold[VEC_SIZE];
- T inclusive_cdf[VEC_SIZE];
- bool greater_than_u[VEC_SIZE], valid[VEC_SIZE];
- #pragma unroll
- for (uint32_t j = 0; j < VEC_SIZE; ++j) {
- prob_greater_than_threshold[j] =
- (prob_vec[j] > threshold) ? prob_vec[j] : T(0);
- valid[j] =
- prob_vec[j] > threshold && (i * BLOCK_THREADS + tx) * VEC_SIZE < d;
- }
- T aggregate_local = BlockReduce<T, BLOCK_THREADS, REDUCE_ALGORITHM>(
- temp_storage->block_prim.reduce)
- .Sum<VEC_SIZE>(prob_greater_than_threshold);
- if (tx == 0) {
- temp_storage->data.block_aggregate.value = aggregate_local;
- }
- __syncthreads();
- aggregate_local = temp_storage->data.block_aggregate.value;
- if (aggregate + aggregate_local > u) {
- if constexpr (DETERMINISTIC) {
- DeterministicInclusiveSum<VEC_SIZE, BLOCK_THREADS, SCAN_ALGORITHM,
- REDUCE_ALGORITHM, T>(
- prob_greater_than_threshold, inclusive_cdf, temp_storage);
- } else {
- BlockScan<T, BLOCK_THREADS, SCAN_ALGORITHM>(temp_storage->block_prim.scan)
- .InclusiveSum<VEC_SIZE>(prob_greater_than_threshold, inclusive_cdf);
- __syncthreads();
- }
- #pragma unroll
- for (uint32_t j = 0; j < VEC_SIZE; ++j) {
- greater_than_u[j] = inclusive_cdf[j] + aggregate > u;
- }
- bool greater_than_u_diff[VEC_SIZE];
- #ifdef APHRODITE_CUB_SUBTRACTLEFT_DEFINED
- BlockAdjacentDifference<bool, BLOCK_THREADS>(
- temp_storage->block_prim.adj_diff)
- .SubtractLeft<VEC_SIZE>(greater_than_u, greater_than_u_diff,
- BoolDiffOp());
- #else
- BlockAdjacentDifference<bool, BLOCK_THREADS>(
- temp_storage->block_prim.adj_diff)
- .FlagHeads<VEC_SIZE>(greater_than_u_diff, greater_than_u, BoolDiffOp(),
- 0);
- #endif
- __syncthreads();
- #pragma unroll
- for (uint32_t j = 0; j < VEC_SIZE; ++j) {
- if (greater_than_u_diff[j] && valid[j]) {
- if constexpr (DETERMINISTIC) {
- temp_storage->data.sampled_id =
- (i * BLOCK_THREADS + tx) * VEC_SIZE + j;
- } else {
- // cub's block scan result might not be monotonic, so we need to find
- // the first element
- atomicMin(&(temp_storage->data.sampled_id),
- (i * BLOCK_THREADS + tx) * VEC_SIZE + j);
- }
- }
- }
- __syncthreads();
- }
- aggregate += aggregate_local;
- }
- template <uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
- BlockReduceAlgorithm REDUCE_ALGORITHM, uint32_t VEC_SIZE,
- bool DETERMINISTIC, typename DType, typename IdType>
- __global__ void SamplingFromProbKernel(DType* probs, DType* uniform_samples,
- IdType* output, IdType* row_indices,
- uint32_t d) {
- const uint32_t bx = blockIdx.x, tx = threadIdx.x;
- const uint32_t row_idx = row_indices == nullptr ? bx : row_indices[bx];
- extern __shared__ __align__(
- alignof(SamplingTempStorage<DType, BLOCK_THREADS, SCAN_ALGORITHM,
- REDUCE_ALGORITHM>)) uint8_t smem_sampling[];
- auto& temp_storage =
- reinterpret_cast<SamplingTempStorage<DType, BLOCK_THREADS, SCAN_ALGORITHM,
- REDUCE_ALGORITHM>&>(smem_sampling);
- temp_storage.data.sampled_id = d - 1;
- __syncthreads();
- vec_t<DType, VEC_SIZE> probs_vec;
- DType aggregate(0);
- float u = uniform_samples[bx];
- for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
- probs_vec.fill(DType(0));
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- probs_vec.load(probs + row_idx * d + i * BLOCK_THREADS * VEC_SIZE +
- tx * VEC_SIZE);
- }
- DeviceSamplingFromProb<VEC_SIZE, BLOCK_THREADS, SCAN_ALGORITHM,
- REDUCE_ALGORITHM, DETERMINISTIC, DType>(
- i, d, DType(0), u, probs_vec, aggregate, &temp_storage);
- if (float(aggregate) > u) {
- break;
- }
- }
- output[bx] = temp_storage.data.sampled_id;
- }
- template <uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
- BlockReduceAlgorithm REDUCE_ALGORITHM, uint32_t VEC_SIZE,
- bool DETERMINISTIC, typename DType, typename IdType>
- __global__ void TopKSamplingFromProbKernel(DType* probs, DType* uniform_samples,
- IdType* output, bool* success,
- IdType* top_k_arr,
- uint32_t top_k_val, uint32_t d,
- uint32_t max_top_k_rounds) {
- const uint32_t batch_size = gridDim.x;
- const uint32_t bx = blockIdx.x, tx = threadIdx.x;
- uint32_t k = top_k_arr == nullptr ? top_k_val : top_k_arr[bx];
- extern __shared__ __align__(
- alignof(SamplingTempStorage<DType, BLOCK_THREADS, SCAN_ALGORITHM,
- REDUCE_ALGORITHM>)) uint8_t smem_sampling[];
- auto& temp_storage =
- reinterpret_cast<SamplingTempStorage<DType, BLOCK_THREADS, SCAN_ALGORITHM,
- REDUCE_ALGORITHM>&>(smem_sampling);
- vec_t<DType, VEC_SIZE> probs_vec;
- DType aggregate;
- DType q = DType(1);
- DType pivot = DType(0);
- IdType sampled_id;
- for (uint32_t round = 0; round < max_top_k_rounds; ++round) {
- temp_storage.data.sampled_id = d - 1;
- __syncthreads();
- DType u = uniform_samples[round * batch_size + bx] * q;
- aggregate = DType(0);
- for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
- probs_vec.fill(DType(0));
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- probs_vec.load(probs + bx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
- }
- DeviceSamplingFromProb<VEC_SIZE, BLOCK_THREADS, SCAN_ALGORITHM,
- REDUCE_ALGORITHM, DETERMINISTIC, DType>(
- i, d, pivot, u, probs_vec, aggregate, &temp_storage);
- if (aggregate > u) {
- break;
- }
- }
- __syncthreads();
- sampled_id = temp_storage.data.sampled_id;
- pivot = max(pivot, probs[bx * d + sampled_id]);
- Pair<DType> aggregate_gt_pivot{DType(0), 0};
- for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
- probs_vec.fill(DType(0));
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- probs_vec.load(probs + bx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
- }
- Pair<DType> probs_gt_pivot[VEC_SIZE];
- #pragma unroll
- for (uint32_t j = 0; j < VEC_SIZE; ++j) {
- probs_gt_pivot[j] = {(probs_vec[j] > pivot) ? probs_vec[j] : DType(0),
- (probs_vec[j] > pivot &&
- (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d)};
- }
- aggregate_gt_pivot +=
- BlockReduce<Pair<DType>, BLOCK_THREADS, REDUCE_ALGORITHM>(
- temp_storage.block_prim.reduce_pair)
- .Sum<VEC_SIZE>(probs_gt_pivot);
- if (tx == 0) {
- temp_storage.data.block_aggregate.pair = aggregate_gt_pivot;
- }
- __syncthreads();
- }
- q = temp_storage.data.block_aggregate.pair.value;
- if (temp_storage.data.block_aggregate.pair.count < k) {
- break;
- }
- }
- __syncthreads();
- if (tx == 0) {
- output[bx] = sampled_id;
- if (temp_storage.data.block_aggregate.pair.count >= k) {
- // failed to sample within MAX_TOP_P_ROUNDS
- if (success != nullptr) {
- success[bx] = false;
- }
- } else {
- if (success != nullptr) {
- success[bx] = true;
- }
- }
- }
- }
- template <uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
- BlockReduceAlgorithm REDUCE_ALGORITHM, uint32_t VEC_SIZE,
- bool DETERMINISTIC, typename DType, typename IdType>
- __global__ void TopPSamplingFromProbKernel(DType* probs, DType* uniform_samples,
- IdType* output, bool* success,
- IdType* row_indices,
- float* top_p_arr, float top_p_val,
- uint32_t d,
- uint32_t max_top_p_rounds) {
- const uint32_t batch_size = gridDim.x;
- const uint32_t bx = blockIdx.x, tx = threadIdx.x;
- float top_p = (top_p_arr == nullptr) ? top_p_val : top_p_arr[bx];
- const uint32_t row_idx = row_indices == nullptr ? bx : row_indices[bx];
- extern __shared__ __align__(
- alignof(SamplingTempStorage<DType, BLOCK_THREADS, SCAN_ALGORITHM,
- REDUCE_ALGORITHM>)) uint8_t smem_sampling[];
- auto& temp_storage =
- reinterpret_cast<SamplingTempStorage<DType, BLOCK_THREADS, SCAN_ALGORITHM,
- REDUCE_ALGORITHM>&>(smem_sampling);
- vec_t<DType, VEC_SIZE> probs_vec;
- DType aggregate;
- DType q = DType(1);
- DType pivot = DType(0);
- IdType sampled_id;
- for (uint32_t round = 0; round < max_top_p_rounds; ++round) {
- temp_storage.data.sampled_id = d - 1;
- __syncthreads();
- DType u = uniform_samples[round * batch_size + bx] * q;
- aggregate = DType(0);
- for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
- probs_vec.fill(DType(0));
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- probs_vec.load(probs + row_idx * d +
- (i * BLOCK_THREADS + tx) * VEC_SIZE);
- }
- DeviceSamplingFromProb<VEC_SIZE, BLOCK_THREADS, SCAN_ALGORITHM,
- REDUCE_ALGORITHM, DETERMINISTIC, DType>(
- i, d, pivot, u, probs_vec, aggregate, &temp_storage);
- if (aggregate > u) {
- break;
- }
- }
- __syncthreads();
- sampled_id = temp_storage.data.sampled_id;
- pivot = max(pivot, probs[row_idx * d + sampled_id]);
- DType aggregate_gt_pivot = DType(0);
- for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
- probs_vec.fill(DType(0));
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- probs_vec.load(probs + row_idx * d +
- (i * BLOCK_THREADS + tx) * VEC_SIZE);
- }
- DType probs_gt_pivot[VEC_SIZE];
- #pragma unroll
- for (uint32_t j = 0; j < VEC_SIZE; ++j) {
- probs_gt_pivot[j] = (probs_vec[j] > pivot) ? probs_vec[j] : DType(0);
- }
- aggregate_gt_pivot +=
- BlockReduce<DType, BLOCK_THREADS>(temp_storage.block_prim.reduce)
- .Sum<VEC_SIZE>(probs_gt_pivot);
- if (tx == 0) {
- temp_storage.data.block_aggregate.value = aggregate_gt_pivot;
- }
- __syncthreads();
- }
- q = temp_storage.data.block_aggregate.value;
- if (float(q) < top_p) {
- break;
- }
- }
- __syncthreads();
- if (tx == 0) {
- output[bx] = sampled_id;
- if (float(q) >= top_p) {
- // failed to sample within MAX_TOP_P_ROUNDS
- if (success != nullptr) {
- success[bx] = false;
- }
- } else {
- if (success != nullptr) {
- success[bx] = true;
- }
- }
- }
- }
- template <uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
- BlockReduceAlgorithm REDUCE_ALGORITHM, uint32_t VEC_SIZE,
- bool DETERMINISTIC, typename DType, typename IdType>
- __global__ void MinPSamplingFromProbKernel(DType* probs, DType* uniform_samples,
- DType* min_p_arr, IdType* output,
- bool* success, float min_p_val,
- uint32_t d,
- uint32_t max_min_p_rounds) {
- const uint32_t batch_size = gridDim.x;
- const uint32_t bx = blockIdx.x, tx = threadIdx.x;
- DType p = (min_p_arr == nullptr) ? min_p_val : min_p_arr[bx];
- extern __shared__ __align__(
- alignof(SamplingTempStorage<DType, BLOCK_THREADS, SCAN_ALGORITHM,
- REDUCE_ALGORITHM>)) uint8_t smem_sampling[];
- auto& temp_storage =
- reinterpret_cast<SamplingTempStorage<DType, BLOCK_THREADS, SCAN_ALGORITHM,
- REDUCE_ALGORITHM>&>(smem_sampling);
- vec_t<DType, VEC_SIZE> probs_vec;
- DType aggregate;
- DType q = DType(1);
- DType pivot = DType(0);
- DType max_p = 0;
- for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
- probs_vec.fill(DType(0));
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- probs_vec.load(probs + bx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
- }
- DType probs_[VEC_SIZE];
- #pragma unroll
- for (uint32_t j = 0; j < VEC_SIZE; ++j) {
- probs_[j] = probs_vec[j];
- }
- max_p = max(
- max_p, BlockReduce<DType, BLOCK_THREADS>(temp_storage.block_prim.reduce)
- .Reduce<VEC_SIZE>(probs_, cub::Max()));
- __syncthreads();
- }
- if (tx == 0) {
- temp_storage.data.block_aggregate.max_p = max_p;
- }
- __syncthreads();
- DType scaled_p = temp_storage.data.block_aggregate.max_p * p;
- IdType sampled_id;
- for (uint32_t round = 0; round < max_min_p_rounds; ++round) {
- temp_storage.data.sampled_id = d - 1;
- __syncthreads();
- DType u = uniform_samples[round * batch_size + bx] * q;
- aggregate = DType(0);
- for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
- probs_vec.fill(DType(0));
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- probs_vec.load(probs + bx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
- }
- DeviceSamplingFromProb<VEC_SIZE, BLOCK_THREADS, SCAN_ALGORITHM,
- REDUCE_ALGORITHM, DETERMINISTIC, DType>(
- i, d, pivot, u, probs_vec, aggregate, &temp_storage);
- if (aggregate > u) {
- break;
- }
- }
- __syncthreads();
- sampled_id = temp_storage.data.sampled_id;
- pivot = max(pivot, probs[bx * d + sampled_id]);
- if (pivot >= scaled_p) {
- break;
- }
- DType aggregate_gt_pivot = DType(0);
- for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
- probs_vec.fill(DType(0));
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- probs_vec.load(probs + bx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
- }
- DType probs_gt_pivot[VEC_SIZE];
- #pragma unroll
- for (uint32_t j = 0; j < VEC_SIZE; ++j) {
- probs_gt_pivot[j] = (probs_vec[j] > pivot) ? probs_vec[j] : DType(0);
- }
- aggregate_gt_pivot +=
- BlockReduce<DType, BLOCK_THREADS>(temp_storage.block_prim.reduce)
- .Sum<VEC_SIZE>(probs_gt_pivot);
- if (tx == 0) {
- temp_storage.data.block_aggregate.value = aggregate_gt_pivot;
- }
- __syncthreads();
- }
- q = temp_storage.data.block_aggregate.value;
- }
- __syncthreads();
- if (tx == 0) {
- output[bx] = sampled_id;
- if (pivot < scaled_p) {
- // failed to sample within MAX_ROUNDS
- if (success != nullptr) {
- success[bx] = false;
- }
- } else {
- if (success != nullptr) {
- success[bx] = true;
- }
- }
- }
- }
- template <uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
- BlockReduceAlgorithm REDUCE_ALGORITHM, uint32_t VEC_SIZE,
- bool DETERMINISTIC, typename DType, typename IdType>
- __global__ void TopKTopPSamplingFromProbKernel(
- DType* probs, DType* uniform_samples, IdType* top_k_arr, DType* top_p_arr,
- IdType* output, bool* success, IdType top_k_val, DType top_p_val,
- uint32_t d, uint32_t max_rounds) {
- const uint32_t batch_size = gridDim.x;
- const uint32_t bx = blockIdx.x, tx = threadIdx.x;
- IdType k = top_k_arr == nullptr ? top_k_val : top_k_arr[bx];
- DType p = top_p_arr == nullptr ? top_p_val : top_p_arr[bx];
- extern __shared__ __align__(
- alignof(SamplingTempStorage<DType, BLOCK_THREADS, SCAN_ALGORITHM,
- REDUCE_ALGORITHM>)) uint8_t smem_sampling[];
- auto& temp_storage =
- reinterpret_cast<SamplingTempStorage<DType, BLOCK_THREADS, SCAN_ALGORITHM,
- REDUCE_ALGORITHM>&>(smem_sampling);
- vec_t<DType, VEC_SIZE> probs_vec;
- DType aggregate;
- DType q = DType(1);
- DType pivot = DType(0);
- IdType sampled_id;
- for (uint32_t round = 0; round < max_rounds; ++round) {
- temp_storage.data.sampled_id = d - 1;
- __syncthreads();
- DType u = uniform_samples[round * batch_size + bx] * q;
- aggregate = DType(0);
- for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
- probs_vec.fill(DType(0));
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- probs_vec.load(probs + bx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
- }
- DeviceSamplingFromProb<VEC_SIZE, BLOCK_THREADS, SCAN_ALGORITHM,
- REDUCE_ALGORITHM, DETERMINISTIC, DType>(
- i, d, pivot, u, probs_vec, aggregate, &temp_storage);
- if (aggregate > u) {
- break;
- }
- }
- __syncthreads();
- sampled_id = temp_storage.data.sampled_id;
- pivot = max(pivot, probs[bx * d + sampled_id]);
- Pair<DType> aggregate_gt_pivot{DType(0), 0};
- for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
- probs_vec.fill(DType(0));
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- probs_vec.load(probs + bx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
- }
- Pair<DType> probs_gt_pivot[VEC_SIZE];
- #pragma unroll
- for (uint32_t j = 0; j < VEC_SIZE; ++j) {
- probs_gt_pivot[j] = {(probs_vec[j] > pivot) ? probs_vec[j] : DType(0),
- (probs_vec[j] > pivot &&
- (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d)};
- }
- aggregate_gt_pivot +=
- BlockReduce<Pair<DType>, BLOCK_THREADS, REDUCE_ALGORITHM>(
- temp_storage.block_prim.reduce_pair)
- .Sum<VEC_SIZE>(probs_gt_pivot);
- if (tx == 0) {
- temp_storage.data.block_aggregate.pair = aggregate_gt_pivot;
- }
- __syncthreads();
- }
- q = temp_storage.data.block_aggregate.pair.value;
- if (temp_storage.data.block_aggregate.pair.count < k && float(q) < p) {
- break;
- }
- }
- __syncthreads();
- if (tx == 0) {
- output[bx] = sampled_id;
- if (temp_storage.data.block_aggregate.pair.count >= k || float(q) >= p) {
- // failed to sample within MAX_TOP_P_ROUNDS
- if (success != nullptr) {
- success[bx] = false;
- }
- } else {
- if (success != nullptr) {
- success[bx] = true;
- }
- }
- }
- }
- template <typename T, typename IdType>
- cudaError_t SamplingFromProb(T* probs, T* uniform_samples, IdType* output,
- uint32_t batch_size, uint32_t d,
- bool deterministic, cudaStream_t stream = 0) {
- constexpr uint32_t BLOCK_THREADS = 1024;
- const uint32_t vec_size = std::gcd(16 / sizeof(T), d);
- dim3 nblks(batch_size);
- dim3 nthrs(BLOCK_THREADS);
- IdType* row_indices_placeholder = nullptr;
- void* args[] = {&probs, &uniform_samples, &output, &row_indices_placeholder,
- &d};
- const uint32_t smem_size =
- sizeof(SamplingTempStorage<T, BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO>);
- DISPATCH_ALIGNED_VEC_SIZE(
- vec_size, VEC_SIZE,
- {DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, {
- auto kernel =
- SamplingFromProbKernel<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO,
- VEC_SIZE, DETERMINISTIC, T, IdType>;
- APHRODITE_CUDA_CALL(cudaLaunchKernel((void*)kernel, nblks, nthrs, args,
- smem_size, stream));
- })});
- return cudaSuccess;
- }
- template <typename T, typename IdType>
- cudaError_t ParallelSamplingFromProb(T* probs, T* uniform_samples,
- IdType* output, IdType* row_indices,
- uint32_t batch_size, uint32_t d,
- bool deterministic,
- cudaStream_t stream = 0) {
- constexpr uint32_t BLOCK_THREADS = 1024;
- const uint32_t vec_size = std::gcd(16 / sizeof(T), d);
- dim3 nblks(batch_size);
- dim3 nthrs(BLOCK_THREADS);
- void* args[] = {&probs, &uniform_samples, &output, &row_indices, &d};
- const uint32_t smem_size =
- sizeof(SamplingTempStorage<T, BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO>);
- DISPATCH_ALIGNED_VEC_SIZE(
- vec_size, VEC_SIZE,
- {DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, {
- auto kernel =
- SamplingFromProbKernel<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO,
- VEC_SIZE, DETERMINISTIC, T, IdType>;
- APHRODITE_CUDA_CALL(cudaLaunchKernel((void*)kernel, nblks, nthrs, args,
- smem_size, stream));
- })});
- return cudaSuccess;
- }
- template <typename T, typename IdType>
- cudaError_t TopKSamplingFromProb(T* probs, T* uniform_samples, IdType* output,
- bool* success, T* top_k_arr,
- uint32_t batch_size, uint32_t top_k_val,
- uint32_t d, uint32_t max_top_k_rounds,
- bool deterministic, cudaStream_t stream = 0) {
- constexpr uint32_t BLOCK_THREADS = 1024;
- const uint32_t vec_size = std::gcd(16 / sizeof(T), d);
- const uint32_t smem_size =
- sizeof(SamplingTempStorage<T, BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO>);
- dim3 nblks(batch_size);
- dim3 nthrs(BLOCK_THREADS);
- void* args[] = {&probs, &uniform_samples, &output, &success,
- &top_k_arr, &top_k_val, &d, &max_top_k_rounds};
- DISPATCH_ALIGNED_VEC_SIZE(
- vec_size, VEC_SIZE,
- {DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, {
- auto kernel =
- TopKSamplingFromProbKernel<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO,
- VEC_SIZE, DETERMINISTIC, T, IdType>;
- APHRODITE_CUDA_CALL(cudaFuncSetAttribute(
- kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
- APHRODITE_CUDA_CALL(cudaLaunchKernel((void*)kernel, nblks, nthrs, args,
- smem_size, stream));
- })});
- return cudaSuccess;
- }
- template <typename T, typename IdType>
- cudaError_t TopPSamplingFromProb(T* probs, T* uniform_samples, IdType* output,
- bool* success, T* top_p_arr,
- uint32_t batch_size, T top_p_val, uint32_t d,
- uint32_t max_top_p_rounds, bool deterministic,
- cudaStream_t stream = 0) {
- constexpr uint32_t BLOCK_THREADS = 1024;
- const uint32_t vec_size = std::gcd(16 / sizeof(T), d);
- const uint32_t smem_size =
- sizeof(SamplingTempStorage<T, BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO>);
- dim3 nblks(batch_size);
- dim3 nthrs(BLOCK_THREADS);
- IdType* row_indices_placeholder = nullptr;
- void* args[] = {&probs,
- &uniform_samples,
- &output,
- &success,
- &row_indices_placeholder,
- &top_p_arr,
- &top_p_val,
- &d,
- &max_top_p_rounds};
- DISPATCH_ALIGNED_VEC_SIZE(
- vec_size, VEC_SIZE,
- {DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, {
- auto kernel =
- TopPSamplingFromProbKernel<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO,
- VEC_SIZE, DETERMINISTIC, T, IdType>;
- APHRODITE_CUDA_CALL(cudaFuncSetAttribute(
- kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
- APHRODITE_CUDA_CALL(cudaLaunchKernel((void*)kernel, nblks, nthrs, args,
- smem_size, stream));
- })});
- return cudaSuccess;
- }
- template <typename T, typename IdType>
- cudaError_t MinPSamplingFromProb(T* probs, T* uniform_samples, T* min_p_arr,
- IdType* output, bool* success,
- uint32_t batch_size, float min_p_val,
- uint32_t d, uint32_t max_rounds,
- bool deterministic, cudaStream_t stream = 0) {
- constexpr uint32_t BLOCK_THREADS = 1024;
- const uint32_t vec_size = std::gcd(16 / sizeof(T), d);
- const uint32_t smem_size =
- sizeof(SamplingTempStorage<T, BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO>);
- dim3 nblks(batch_size);
- dim3 nthrs(BLOCK_THREADS);
- void* args[] = {&probs, &uniform_samples, &min_p_arr, &output,
- &success, &min_p_val, &d, &max_rounds};
- DISPATCH_ALIGNED_VEC_SIZE(
- vec_size, VEC_SIZE,
- {DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, {
- auto kernel =
- MinPSamplingFromProbKernel<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO,
- VEC_SIZE, DETERMINISTIC, T, IdType>;
- APHRODITE_CUDA_CALL(cudaFuncSetAttribute(
- kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
- APHRODITE_CUDA_CALL(cudaLaunchKernel((void*)kernel, nblks, nthrs, args,
- smem_size, stream));
- })});
- return cudaSuccess;
- }
- template <typename T, typename IdType>
- cudaError_t TopKTopPSamplingFromProb(T* probs, T* uniform_samples,
- IdType* top_k_arr, T* top_p_arr,
- IdType* output, bool* success,
- uint32_t batch_size, IdType top_k_val,
- T top_p_val, uint32_t d,
- uint32_t max_rounds, bool deterministic,
- cudaStream_t stream = 0) {
- constexpr uint32_t BLOCK_THREADS = 1024;
- const uint32_t vec_size = std::gcd(16 / sizeof(T), d);
- const uint32_t smem_size =
- sizeof(SamplingTempStorage<T, BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO>);
- dim3 nblks(batch_size);
- dim3 nthrs(BLOCK_THREADS);
- void* args[] = {&probs, &uniform_samples, &top_k_arr, &top_p_arr,
- &output, &success, &top_k_val, &top_p_val,
- &d, &max_rounds};
- DISPATCH_ALIGNED_VEC_SIZE(
- vec_size, VEC_SIZE,
- {DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, {
- auto kernel = TopKTopPSamplingFromProbKernel<BLOCK_THREADS, SCAN_ALGO,
- REDUCE_ALGO, VEC_SIZE,
- DETERMINISTIC, T, IdType>;
- APHRODITE_CUDA_CALL(cudaFuncSetAttribute(
- kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
- APHRODITE_CUDA_CALL(cudaLaunchKernel((void*)kernel, nblks, nthrs, args,
- smem_size, stream));
- })});
- return cudaSuccess;
- }
- template <typename T, uint32_t BLOCK_THREADS,
- BlockReduceAlgorithm REDUCE_ALGORITHM>
- struct RenormTempStorage {
- union {
- typename BlockReduce<T, BLOCK_THREADS, REDUCE_ALGORITHM>::TempStorage
- reduce;
- typename BlockReduce<int, BLOCK_THREADS, REDUCE_ALGORITHM>::TempStorage
- reduce_int;
- typename BlockReduce<Pair<T>, BLOCK_THREADS, REDUCE_ALGORITHM>::TempStorage
- reduce_pair;
- } block_prim;
- struct {
- T max_val;
- T min_val;
- union {
- T value;
- int count;
- Pair<T> pair;
- } block_aggregate;
- } data;
- };
- template <uint32_t BLOCK_THREADS, BlockReduceAlgorithm REDUCE_ALGORITHM,
- uint32_t VEC_SIZE, typename DType>
- __global__ void TopPRenormProbKernel(DType* probs, DType* renormed_prob,
- DType* top_p_arr, float top_p_val,
- uint32_t d) {
- const uint32_t bx = blockIdx.x, tx = threadIdx.x;
- const uint32_t row_idx = bx;
- float p = top_p_arr == nullptr ? top_p_val : top_p_arr[bx];
- extern __shared__ __align__(
- alignof(RenormTempStorage<DType, BLOCK_THREADS, REDUCE_ALGO>))
- uint8_t smem_renorm[];
- auto& temp_storage =
- reinterpret_cast<RenormTempStorage<DType, BLOCK_THREADS, REDUCE_ALGO>&>(
- smem_renorm);
- temp_storage.data.max_val = DType(0);
- vec_t<DType, VEC_SIZE> probs_vec;
- DType probs_greater_than_pivot[VEC_SIZE]; // pivot initialized to 0
- DType threadlocal_max_val = DType(0);
- for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
- probs_vec.fill(DType(0));
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- probs_vec.load(probs + row_idx * d + i * BLOCK_THREADS * VEC_SIZE +
- tx * VEC_SIZE);
- }
- #pragma unroll
- for (uint32_t j = 0; j < VEC_SIZE; ++j) {
- probs_greater_than_pivot[j] = probs_vec[j];
- }
- threadlocal_max_val =
- max(threadlocal_max_val,
- BlockReduce<DType, BLOCK_THREADS, REDUCE_ALGORITHM>(
- temp_storage.block_prim.reduce)
- .Reduce<VEC_SIZE>(probs_greater_than_pivot, cub::Max()));
- __syncthreads();
- }
- if (tx == 0) {
- temp_storage.data.max_val = threadlocal_max_val;
- }
- __syncthreads();
- threadlocal_max_val = temp_storage.data.max_val;
- float low = 0, high = threadlocal_max_val;
- DType min_gt_low, max_le_high;
- DType sum_low(1);
- // f(x) = sum(probs[probs > x]), f(x) is non-increasing
- // min_gt_low = min{p \in probs | p > low}, max_le_high = max{p \in probs | p
- // <= high} loop invariant:
- // - f(low) >= p, f(high) < p
- // - f(low) > f(min_gt_low) >= f(max_le_high) == f(high)
- // stopping condition
- // - f(low) >= p, f(min_gt_low) == f(max_le_high) == f(high) < p
- do {
- DType threadlocal_sum(0);
- float mid = (low + high) / 2;
- min_gt_low = high;
- max_le_high = low;
- for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
- probs_vec.fill(DType(0));
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- probs_vec.load(probs + row_idx * d + i * BLOCK_THREADS * VEC_SIZE +
- tx * VEC_SIZE);
- }
- #pragma unroll
- for (uint32_t j = 0; j < VEC_SIZE; ++j) {
- probs_greater_than_pivot[j] =
- (probs_vec[j] > mid) ? probs_vec[j] : DType(0);
- if (probs_vec[j] > low && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d) {
- min_gt_low = min(min_gt_low, probs_vec[j]);
- }
- if (probs_vec[j] <= high &&
- (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d) {
- max_le_high = max(max_le_high, probs_vec[j]);
- }
- }
- threadlocal_sum += BlockReduce<DType, BLOCK_THREADS, REDUCE_ALGORITHM>(
- temp_storage.block_prim.reduce)
- .Sum<VEC_SIZE>(probs_greater_than_pivot);
- __syncthreads();
- }
- min_gt_low = BlockReduce<DType, BLOCK_THREADS, REDUCE_ALGORITHM>(
- temp_storage.block_prim.reduce)
- .Reduce(min_gt_low, cub::Min());
- __syncthreads();
- max_le_high = BlockReduce<DType, BLOCK_THREADS, REDUCE_ALGORITHM>(
- temp_storage.block_prim.reduce)
- .Reduce(max_le_high, cub::Max());
- if (tx == 0) {
- temp_storage.data.block_aggregate.value = threadlocal_sum;
- temp_storage.data.min_val = min_gt_low;
- temp_storage.data.max_val = max_le_high;
- }
- __syncthreads();
- threadlocal_sum = temp_storage.data.block_aggregate.value;
- min_gt_low = temp_storage.data.min_val;
- max_le_high = temp_storage.data.max_val;
- if (threadlocal_sum >= p) {
- low = mid;
- sum_low = float(threadlocal_sum);
- } else {
- high = min(mid, max_le_high);
- }
- } while (min_gt_low != max_le_high);
- DType normalizer = math::ptx_rcp(max(sum_low, 1e-8));
- // normalize
- for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
- probs_vec.fill(DType(0));
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- probs_vec.load(probs + row_idx * d + i * BLOCK_THREADS * VEC_SIZE +
- tx * VEC_SIZE);
- }
- #pragma unroll
- for (uint32_t j = 0; j < VEC_SIZE; ++j) {
- probs_vec[j] =
- (probs_vec[j] > low) ? probs_vec[j] * normalizer : DType(0);
- }
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- probs_vec.store(renormed_prob + row_idx * d +
- i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
- }
- }
- }
- template <uint32_t BLOCK_THREADS, BlockReduceAlgorithm REDUCE_ALGORITHM,
- uint32_t VEC_SIZE, typename DType, typename IdType>
- __global__ void TopKMaskLogitsKernel(DType* logits, DType* masked_logits,
- IdType* top_k_arr, uint32_t top_k_val,
- uint32_t d) {
- const uint32_t bx = blockIdx.x, tx = threadIdx.x;
- const uint32_t row_idx = bx;
- uint32_t k = top_k_arr == nullptr ? top_k_val : top_k_arr[bx];
- float pivot = -std::numeric_limits<float>::infinity();
- vec_t<DType, VEC_SIZE> logits_vec;
- if (k < d) {
- extern __shared__ __align__(
- alignof(RenormTempStorage<DType, BLOCK_THREADS, REDUCE_ALGO>))
- uint8_t smem_renorm[];
- auto& temp_storage =
- reinterpret_cast<RenormTempStorage<DType, BLOCK_THREADS, REDUCE_ALGO>&>(
- smem_renorm);
- DType logits_greater_than_pivot[VEC_SIZE]; // pivot initialized to 0
- DType threadlocal_max_val = DType(-std::numeric_limits<float>::infinity()),
- threadlocal_min_val = DType(std::numeric_limits<float>::infinity());
- for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
- logits_vec.fill(DType(0));
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- logits_vec.load(logits + row_idx * d + i * BLOCK_THREADS * VEC_SIZE +
- tx * VEC_SIZE);
- }
- #pragma unroll
- for (uint32_t j = 0; j < VEC_SIZE; ++j) {
- logits_greater_than_pivot[j] = logits_vec[j];
- }
- threadlocal_max_val =
- max(threadlocal_max_val,
- BlockReduce<DType, BLOCK_THREADS, REDUCE_ALGORITHM>(
- temp_storage.block_prim.reduce)
- .Reduce<VEC_SIZE>(logits_greater_than_pivot, cub::Max()));
- __syncthreads();
- threadlocal_min_val =
- min(threadlocal_min_val,
- BlockReduce<DType, BLOCK_THREADS, REDUCE_ALGORITHM>(
- temp_storage.block_prim.reduce)
- .Reduce<VEC_SIZE>(logits_greater_than_pivot, cub::Min()));
- __syncthreads();
- }
- if (tx == 0) {
- temp_storage.data.max_val = threadlocal_max_val;
- temp_storage.data.min_val = threadlocal_min_val;
- }
- __syncthreads();
- threadlocal_max_val = temp_storage.data.max_val;
- threadlocal_min_val = temp_storage.data.min_val;
- float low = threadlocal_min_val - 1, high = threadlocal_max_val;
- DType min_gt_low, max_le_high;
- // f(x) = len(nonzero(probs > x)), f(x) is non-increasing
- // min_gt_low = min{p \in probs | p > low}, max_le_high = max{p \in probs |
- // p <= high} loop invariant:
- // - f(low) >= k, f(high) < k
- // - f(low) > f(min_gt_low) >= f(max_le_high) == f(high)
- // stopping condition: min_gt_low == max_le_high
- // - f(low) >= k, f(min_gt_low) == f(max_le_high) == f(high) < k
- do {
- int threadlocal_count_sum = 0;
- int probs_greater_than_pivot_count[VEC_SIZE]; // pivot initialized to 0
- float mid = (low + high) / 2;
- min_gt_low = high;
- max_le_high = low;
- for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
- logits_vec.fill(DType(0));
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- logits_vec.load(logits + row_idx * d + i * BLOCK_THREADS * VEC_SIZE +
- tx * VEC_SIZE);
- }
- #pragma unroll
- for (uint32_t j = 0; j < VEC_SIZE; ++j) {
- probs_greater_than_pivot_count[j] =
- logits_vec[j] > mid &&
- (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d;
- if (logits_vec[j] > low &&
- (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d) {
- min_gt_low = min(min_gt_low, logits_vec[j]);
- }
- if (logits_vec[j] <= high &&
- (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d) {
- max_le_high = max(max_le_high, logits_vec[j]);
- }
- }
- threadlocal_count_sum +=
- BlockReduce<int, BLOCK_THREADS, REDUCE_ALGORITHM>(
- temp_storage.block_prim.reduce_int)
- .Sum<VEC_SIZE>(probs_greater_than_pivot_count);
- __syncthreads();
- }
- min_gt_low = BlockReduce<DType, BLOCK_THREADS, REDUCE_ALGORITHM>(
- temp_storage.block_prim.reduce)
- .Reduce(min_gt_low, cub::Min());
- __syncthreads();
- max_le_high = BlockReduce<DType, BLOCK_THREADS, REDUCE_ALGORITHM>(
- temp_storage.block_prim.reduce)
- .Reduce(max_le_high, cub::Max());
- if (tx == 0) {
- temp_storage.data.block_aggregate.count = threadlocal_count_sum;
- temp_storage.data.min_val = min_gt_low;
- temp_storage.data.max_val = max_le_high;
- }
- __syncthreads();
- threadlocal_count_sum = temp_storage.data.block_aggregate.count;
- min_gt_low = temp_storage.data.min_val;
- max_le_high = temp_storage.data.max_val;
- if (threadlocal_count_sum >= k) {
- low = mid;
- } else {
- high = min(mid, max_le_high);
- }
- } while (min_gt_low != max_le_high);
- pivot = low;
- }
- // masking
- for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
- logits_vec.fill(DType(0));
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- logits_vec.load(logits + row_idx * d + i * BLOCK_THREADS * VEC_SIZE +
- tx * VEC_SIZE);
- }
- #pragma unroll
- for (uint32_t j = 0; j < VEC_SIZE; ++j) {
- logits_vec[j] = (logits_vec[j] > pivot)
- ? logits_vec[j]
- : DType(-std::numeric_limits<float>::infinity());
- }
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- logits_vec.store(masked_logits + row_idx * d +
- i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
- }
- }
- }
- template <uint32_t BLOCK_THREADS, BlockReduceAlgorithm REDUCE_ALGORITHM,
- uint32_t VEC_SIZE, typename DType, typename IdType>
- __global__ void TopKRenormProbKernel(DType* probs, DType* renormed_prob,
- IdType* top_k_arr, uint32_t top_k_val,
- uint32_t d) {
- const uint32_t bx = blockIdx.x, tx = threadIdx.x;
- const uint32_t row_idx = bx;
- uint32_t k = top_k_arr == nullptr ? top_k_val : top_k_arr[bx];
- float pivot = -std::numeric_limits<float>::infinity(), normalizer = 1;
- vec_t<DType, VEC_SIZE> probs_vec;
- if (k < d) {
- extern __shared__ __align__(
- alignof(RenormTempStorage<DType, BLOCK_THREADS, REDUCE_ALGO>))
- uint8_t smem_renorm[];
- auto& temp_storage =
- reinterpret_cast<RenormTempStorage<DType, BLOCK_THREADS, REDUCE_ALGO>&>(
- smem_renorm);
- temp_storage.data.max_val = DType(0);
- DType probs_greater_than_pivot[VEC_SIZE]; // pivot initialized to 0
- DType threadlocal_max_val = DType(0);
- for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
- probs_vec.fill(DType(0));
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- probs_vec.load(probs + row_idx * d + i * BLOCK_THREADS * VEC_SIZE +
- tx * VEC_SIZE);
- }
- #pragma unroll
- for (uint32_t j = 0; j < VEC_SIZE; ++j) {
- probs_greater_than_pivot[j] = probs_vec[j];
- }
- threadlocal_max_val =
- max(threadlocal_max_val,
- BlockReduce<DType, BLOCK_THREADS, REDUCE_ALGORITHM>(
- temp_storage.block_prim.reduce)
- .Reduce<VEC_SIZE>(probs_greater_than_pivot, cub::Max()));
- __syncthreads();
- }
- if (tx == 0) {
- temp_storage.data.max_val = threadlocal_max_val;
- }
- __syncthreads();
- threadlocal_max_val = temp_storage.data.max_val;
- float low = 0, high = threadlocal_max_val;
- DType min_gt_low, max_le_high;
- DType sum_low(1);
- // f(x) = len(nonzero(probs > x)), f(x) is non-increasing
- // min_gt_low = min{p \in probs | p > low}, max_le_high = max{p \in probs |
- // p <= high} loop invariant:
- // - f(low) >= k, f(high) < k
- // - f(low) > f(min_gt_low) >= f(max_le_high) == f(high)
- // stopping condition: min_gt_low == max_le_high
- // - f(low) >= k, f(min_gt_low) == f(max_le_high) == f(high) < k
- do {
- Pair<DType> threadlocal_sum{DType(0), 0};
- Pair<DType>
- probs_greater_than_pivot_pair[VEC_SIZE]; // pivot initialized to 0
- float mid = (low + high) / 2;
- min_gt_low = high;
- max_le_high = low;
- for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
- probs_vec.fill(DType(0));
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- probs_vec.load(probs + row_idx * d + i * BLOCK_THREADS * VEC_SIZE +
- tx * VEC_SIZE);
- }
- #pragma unroll
- for (uint32_t j = 0; j < VEC_SIZE; ++j) {
- probs_greater_than_pivot_pair[j] = {
- (probs_vec[j] > mid) ? probs_vec[j] : DType(0),
- (probs_vec[j] > mid &&
- (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d)};
- if (probs_vec[j] > low &&
- (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d) {
- min_gt_low = min(min_gt_low, probs_vec[j]);
- }
- if (probs_vec[j] <= high &&
- (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d) {
- max_le_high = max(max_le_high, probs_vec[j]);
- }
- }
- threadlocal_sum +=
- BlockReduce<Pair<DType>, BLOCK_THREADS, REDUCE_ALGORITHM>(
- temp_storage.block_prim.reduce_pair)
- .Sum<VEC_SIZE>(probs_greater_than_pivot_pair);
- __syncthreads();
- }
- min_gt_low = BlockReduce<DType, BLOCK_THREADS, REDUCE_ALGORITHM>(
- temp_storage.block_prim.reduce)
- .Reduce(min_gt_low, cub::Min());
- __syncthreads();
- max_le_high = BlockReduce<DType, BLOCK_THREADS, REDUCE_ALGORITHM>(
- temp_storage.block_prim.reduce)
- .Reduce(max_le_high, cub::Max());
- if (tx == 0) {
- temp_storage.data.block_aggregate.pair = threadlocal_sum;
- temp_storage.data.min_val = min_gt_low;
- temp_storage.data.max_val = max_le_high;
- }
- __syncthreads();
- threadlocal_sum = temp_storage.data.block_aggregate.pair;
- min_gt_low = temp_storage.data.min_val;
- max_le_high = temp_storage.data.max_val;
- if (threadlocal_sum.count >= k) {
- low = mid;
- sum_low = float(threadlocal_sum.value);
- } else {
- high = min(mid, max_le_high);
- }
- } while (min_gt_low != max_le_high);
- normalizer = math::ptx_rcp(max(sum_low, 1e-8));
- pivot = low;
- }
- // normalize
- for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
- probs_vec.fill(DType(0));
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- probs_vec.load(probs + row_idx * d + i * BLOCK_THREADS * VEC_SIZE +
- tx * VEC_SIZE);
- }
- #pragma unroll
- for (uint32_t j = 0; j < VEC_SIZE; ++j) {
- probs_vec[j] =
- (probs_vec[j] > pivot) ? probs_vec[j] * normalizer : DType(0);
- }
- if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
- probs_vec.store(renormed_prob + row_idx * d +
- i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
- }
- }
- }
- template <typename DType>
- cudaError_t TopPRenormProb(DType* probs, DType* renormed_prob, DType* top_p_arr,
- uint32_t batch_size, float top_p_val, uint32_t d,
- cudaStream_t stream = 0) {
- const uint32_t BLOCK_THREADS = 1024;
- const uint32_t vec_size = std::gcd(16 / sizeof(DType), d);
- const uint32_t smem_size =
- sizeof(RenormTempStorage<DType, BLOCK_THREADS, REDUCE_ALGO>);
- dim3 nblks(batch_size);
- dim3 nthrs(BLOCK_THREADS);
- void* args[] = {&probs, &renormed_prob, &top_p_arr, &top_p_val, &d};
- DISPATCH_ALIGNED_VEC_SIZE(vec_size, VEC_SIZE, {
- auto kernel =
- TopPRenormProbKernel<BLOCK_THREADS, REDUCE_ALGO, VEC_SIZE, DType>;
- APHRODITE_CUDA_CALL(cudaFuncSetAttribute(
- kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
- APHRODITE_CUDA_CALL(
- cudaLaunchKernel((void*)kernel, nblks, nthrs, args, smem_size, stream));
- });
- return cudaSuccess;
- }
- template <typename DType, typename IdType>
- cudaError_t TopKRenormProb(DType* probs, DType* renormed_prob,
- IdType* top_k_arr, uint32_t batch_size,
- uint32_t top_k_val, uint32_t d,
- cudaStream_t stream = 0) {
- const uint32_t BLOCK_THREADS = 1024;
- const uint32_t vec_size = std::gcd(16 / sizeof(DType), d);
- const uint32_t smem_size =
- sizeof(RenormTempStorage<DType, BLOCK_THREADS, REDUCE_ALGO>);
- dim3 nblks(batch_size);
- dim3 nthrs(BLOCK_THREADS);
- void* args[] = {&probs, &renormed_prob, &top_k_arr, &top_k_val, &d};
- DISPATCH_ALIGNED_VEC_SIZE(vec_size, VEC_SIZE, {
- auto kernel = TopKRenormProbKernel<BLOCK_THREADS, REDUCE_ALGO, VEC_SIZE,
- DType, IdType>;
- APHRODITE_CUDA_CALL(cudaFuncSetAttribute(
- kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
- APHRODITE_CUDA_CALL(
- cudaLaunchKernel((void*)kernel, nblks, nthrs, args, smem_size, stream));
- });
- return cudaSuccess;
- }
- template <typename DType, typename IdType>
- cudaError_t TopKMaskLogits(DType* logits, DType* masked_logits,
- IdType* top_k_arr, uint32_t batch_size,
- uint32_t top_k_val, uint32_t d,
- cudaStream_t stream = 0) {
- const uint32_t BLOCK_THREADS = 1024;
- const uint32_t vec_size = std::gcd(16 / sizeof(DType), d);
- const uint32_t smem_size =
- sizeof(RenormTempStorage<DType, BLOCK_THREADS, REDUCE_ALGO>);
- dim3 nblks(batch_size);
- dim3 nthrs(BLOCK_THREADS);
- void* args[] = {&logits, &masked_logits, &top_k_arr, &top_k_val, &d};
- DISPATCH_ALIGNED_VEC_SIZE(vec_size, VEC_SIZE, {
- auto kernel = TopKMaskLogitsKernel<BLOCK_THREADS, REDUCE_ALGO, VEC_SIZE,
- DType, IdType>;
- APHRODITE_CUDA_CALL(cudaFuncSetAttribute(
- kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
- APHRODITE_CUDA_CALL(
- cudaLaunchKernel((void*)kernel, nblks, nthrs, args, smem_size, stream));
- });
- return cudaSuccess;
- }
- template <typename T, typename IdType>
- cudaError_t ParallelTopPSamplingFromProb(
- T* probs, T* uniform_samples, IdType* output, bool* success,
- IdType* row_indices, T* top_p_arr, uint32_t batch_size, uint32_t d,
- uint32_t max_top_p_rounds, bool deterministic, cudaStream_t stream = 0) {
- constexpr uint32_t BLOCK_THREADS = 1024;
- const uint32_t vec_size = std::gcd(16 / sizeof(T), d);
- const uint32_t smem_size =
- sizeof(SamplingTempStorage<T, BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO>);
- dim3 nblks(batch_size);
- dim3 nthrs(BLOCK_THREADS);
- T top_p_placeholder = 0;
- void* args[] = {
- &probs, &uniform_samples, &output, &success, &row_indices,
- &top_p_arr, &top_p_placeholder, &d, &max_top_p_rounds};
- DISPATCH_ALIGNED_VEC_SIZE(
- vec_size, VEC_SIZE,
- {DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, {
- auto kernel =
- TopPSamplingFromProbKernel<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO,
- VEC_SIZE, DETERMINISTIC, T, IdType>;
- APHRODITE_CUDA_CALL(cudaFuncSetAttribute(
- kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
- APHRODITE_CUDA_CALL(cudaLaunchKernel((void*)kernel, nblks, nthrs, args,
- smem_size, stream));
- })});
- return cudaSuccess;
- }
- } // namespace sampling
- } // namespace aphrodite
- #endif // APHRODITE_SAMPLING_CUH_
|