123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238 |
- #pragma once
- #include <ATen/cuda/CUDAContext.h>
- #include <c10/cuda/CUDAGuard.h>
- #include <torch/all.h>
- // clang-format off
- // The cutlass include order matters (annoyingly)
- #include "cutlass/cutlass.h"
- #include "cute/tensor.hpp"
- #include "cutlass/tensor_ref.h"
- #include "cutlass/epilogue/collective/default_epilogue.hpp"
- #include "cutlass/epilogue/thread/linear_combination.h"
- #include "cutlass/gemm/dispatch_policy.hpp"
- #include "cutlass/gemm/collective/collective_builder.hpp"
- #include "cutlass/epilogue/collective/collective_builder.hpp"
- #include "cutlass/gemm/device/gemm_universal_adapter.h"
- #include "cutlass/gemm/kernel/gemm_universal.hpp"
- // clang-format on
- #include "cutlass_extensions/cute_utils.cuh"
- #include "cutlass_extensions/aphrodite_numeric_conversion.cuh"
- #include "machete_collective_builder.cuh"
- #include "machete_prepacked_layout.cuh"
- #include "machete_interleaving_utils.cuh"
- namespace machete {
- using namespace cute;
- // NOTE This kernel computes D = alpha * A * B + beta * C by computing
- // D^t = alpha * B^t * A^t + beta * C^t, this is because the wgmma
- // instructions only support sourcing from registers for the left-hand
- // operand, we want to upconvert/decompress the quantized operand in
- // register. Since the primary use case we want to support is Y = XW^t where
- // W is quantized, in this situation or right-hand operand is quantized so
- // we compute the transpose to move it to the left-hand side.
- template <typename ElementA_, typename ElementB_, typename ElementD_,
- typename AccumulatorT, typename ScaleT, typename ZeroT,
- class KernelSchedule, typename ScheduleConfig, bool with_C,
- bool with_scales, bool with_zeropoints>
- struct MacheteKernelTemplate {
- using MmaType = ElementA_;
- using ElementA = ElementA_;
- using ElementB = ElementB_;
- using ElementD = ElementD_;
- using ElementC = cute::conditional_t<with_C, ElementD, void>;
- using ElementZ = ZeroT;
- using ElementS = ScaleT;
- using ElementAccumulator =
- AccumulatorT; // Element type for internal accumulation
- using ElementCompute = AccumulatorT; // For Epilogue
- using BTypeTuple = cute::conditional_t<
- with_scales,
- cute::conditional_t<with_zeropoints,
- cute::tuple<ElementB, ElementS, ElementZ>,
- cute::tuple<ElementB, ElementS>>,
- ElementB>;
- using LayoutA = cutlass::layout::RowMajor;
- using LayoutC = cutlass::layout::RowMajor;
- using LayoutD = LayoutC;
- using LayoutScale = cutlass::layout::RowMajor;
- // not actually used since B has the prepacked layout, but required by cutlass
- using _LayoutB = cutlass::layout::ColumnMajor;
- // Interface strides expected by create_arguments (will get transposed)
- using StrideA = cutlass::detail::TagToStrideA_t<LayoutA>;
- using StrideC = cutlass::detail::TagToStrideA_t<LayoutC>;
- using StrideD = cutlass::detail::TagToStrideA_t<LayoutD>;
- using StrideS = cutlass::detail::TagToStrideA_t<LayoutScale>;
- using StrideZ = StrideS;
- using LayoutA_Transpose =
- typename cutlass::layout::LayoutTranspose<LayoutA>::type;
- using LayoutC_Transpose =
- typename cutlass::layout::LayoutTranspose<LayoutC>::type;
- using LayoutD_Transpose =
- typename cutlass::layout::LayoutTranspose<LayoutD>::type;
- using ArchTag = cutlass::arch::Sm90;
- using OperatorClass = cutlass::arch::OpClassTensorOp;
- using PrepackedLayoutB =
- PrepackedLayoutBTemplate<ElementA_, ElementB_, ElementD_, AccumulatorT,
- LayoutA_Transpose, KernelSchedule>;
- static int constexpr TileShapeK =
- 128 * 8 / cutlass::sizeof_bits<MmaType>::value;
- static int constexpr AlignmentA = 128 / cutlass::sizeof_bits_v<ElementA>;
- static int constexpr AlignmentB = 128 / cutlass::sizeof_bits_v<ElementB>;
- static int constexpr AlignmentC =
- (with_C) ? 128 / cutlass::sizeof_bits_v<ElementC> : 0;
- static int constexpr AlignmentD = 128 / cutlass::sizeof_bits_v<ElementD>;
- using TileShape = decltype(append(typename ScheduleConfig::TileShapeNM{},
- cute::Int<TileShapeK>{}));
- using ClusterShape = typename ScheduleConfig::ClusterShape;
- using EpilogueSchedule = typename ScheduleConfig::EpilogueSchedule;
- using EpilogueTileType = typename ScheduleConfig::EpilogueTileType;
- using TileScheduler = typename ScheduleConfig::TileScheduler;
- using CollectiveEpilogue =
- typename cutlass::epilogue::collective::CollectiveBuilder<
- ArchTag, OperatorClass, TileShape, ClusterShape, EpilogueTileType,
- ElementAccumulator, ElementAccumulator, ElementC, LayoutC_Transpose,
- AlignmentC, ElementD, LayoutD_Transpose, AlignmentD,
- EpilogueSchedule>::CollectiveOp;
- using CollectiveMainloop =
- typename cutlass::gemm::collective::APHRODITECollectiveBuilder<
- cutlass::gemm::collective::MacheteKernelTag, ArchTag, OperatorClass,
- BTypeTuple, PrepackedLayoutB, AlignmentB, ElementA, LayoutA_Transpose,
- AlignmentA, ElementAccumulator, TileShape, ClusterShape,
- cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
- sizeof(typename CollectiveEpilogue::SharedStorage))>,
- KernelSchedule>::CollectiveOp;
- using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
- Shape<int, int, int, int>, // Indicates ProblemShape
- CollectiveMainloop, CollectiveEpilogue, TileScheduler>;
- using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
- // stride_B is unused (since B is prepacked), but still required by cutlass
- using _StrideB = cutlass::detail::TagToStrideB_t<_LayoutB>;
- using Arguments = typename Gemm::Arguments;
- using MainloopArguments = typename GemmKernel::MainloopArguments;
- using EpilogueArguments = typename GemmKernel::EpilogueArguments;
- template <typename ShapeA, typename ShapeC, typename ShapeD, typename ShapeS,
- typename ShapeZ>
- static Arguments create_arguments(
- cudaStream_t stream,
- ElementA const* A_ptr, // A is an MxK matrix
- Layout<ShapeA, StrideA> const& layout_A,
- ElementB const* B_ptr, // B is an KxN prepacked matrix
- ElementD* D_ptr, // D is an MxN matrix
- Layout<ShapeD, StrideD> const& layout_D,
- ElementC const* C_ptr, // C is an MxN matrix
- std::optional<Layout<ShapeC, StrideC>> const& layout_C,
- ElementS const* S_ptr, // S is an scale_KxN matrix
- std::optional<Layout<ShapeS, StrideS>> const& layout_S,
- ElementZ const* Z_ptr, // Z is an scale_KxN matrix
- std::optional<Layout<ShapeZ, StrideZ>> const& layout_Z,
- ElementCompute alpha, ElementCompute beta,
- std::optional<int> maybe_group_size) {
- static_assert(!with_zeropoints || with_scales);
- int M = size<0>(layout_A), N = size<1>(layout_D), K = size<1>(layout_A);
- int const group_size =
- maybe_group_size == -1 ? K : maybe_group_size.value_or(K);
- int const scale_k = (K + group_size - 1) / group_size;
- TORCH_CHECK(size<0>(layout_A) == M && size<1>(layout_A) == K);
- TORCH_CHECK(size<0>(layout_D) == M && size<1>(layout_D) == N);
- if constexpr (with_C) {
- TORCH_CHECK(C_ptr && layout_C);
- } else {
- TORCH_CHECK(!C_ptr, "C not supported");
- }
- if constexpr (with_scales) {
- TORCH_CHECK(S_ptr && layout_S);
- TORCH_CHECK((size<0>(*layout_S) == scale_k && size<1>(*layout_S) == N));
- } else {
- TORCH_CHECK(!S_ptr, "Scales not supported");
- }
- if constexpr (with_zeropoints) {
- TORCH_CHECK(Z_ptr && layout_Z);
- TORCH_CHECK((size<0>(*layout_Z) == scale_k && size<1>(*layout_Z) == N));
- TORCH_CHECK(layout_S && *layout_Z == *layout_S,
- "Scales and zeros must have the same layout");
- } else {
- TORCH_CHECK(!Z_ptr, "Zeropoints not supported");
- }
- // Transpose A and D
- // A doesn't need to be transposed since cutlass expects a NxK matrix
- // for B (which is At)
- auto stride_At = layout_A.stride();
- auto stride_Dt = permute_layout<1, 0, 2>(layout_D).stride();
- auto stride_Ct = stride_Dt;
- if (layout_C) {
- stride_Ct = permute_layout<1, 0, 2>(*layout_C).stride();
- }
- MainloopArguments mainloop_arguments{};
- EpilogueArguments epilogue_arguments{
- {alpha, beta}, C_ptr, stride_Ct, D_ptr, stride_Dt};
- if constexpr (with_scales && with_zeropoints) {
- auto stride_S = permute_layout<1, 0, 2>(*layout_S).stride();
- mainloop_arguments =
- MainloopArguments{B_ptr, _StrideB{}, A_ptr, stride_At,
- S_ptr, stride_S, group_size, Z_ptr};
- } else if constexpr (with_scales) {
- auto stride_S = permute_layout<1, 0, 2>(*layout_S).stride();
- mainloop_arguments = MainloopArguments{
- B_ptr, _StrideB{}, A_ptr, stride_At, S_ptr, stride_S, group_size};
- } else {
- mainloop_arguments =
- MainloopArguments{B_ptr, _StrideB{}, A_ptr, stride_At};
- }
- return Arguments{cutlass::gemm::GemmUniversalMode::kGemm,
- {N, M, K, 1},
- mainloop_arguments,
- epilogue_arguments};
- };
- static size_t get_workspace_size(Arguments const& args) {
- return Gemm::get_workspace_size(args);
- }
- static bool can_implement(Arguments const& args) {
- return Gemm::can_implement(args) == cutlass::Status::kSuccess;
- }
- static void run(Arguments const& args, void* workspace, cudaStream_t stream) {
- Gemm gemm_op;
- cutlass::Status status = gemm_op.initialize(args, workspace, stream);
- TORCH_CHECK(status == cutlass::Status::kSuccess,
- "Machete kernel failed to initialize workspace");
- status = gemm_op.run(stream);
- TORCH_CHECK(status == cutlass::Status::kSuccess, "Machete kernel failed");
- }
- };
- }; // namespace machete
|