123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281 |
- #include "marlin.cuh"
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
- namespace marlin {
- template <int const num_threads, int const num_bits, bool const has_perm>
- __global__ void awq_marlin_repack_kernel(
- uint32_t const* __restrict__ b_q_weight_ptr, uint32_t* __restrict__ out_ptr,
- int size_k, int size_n) {}
- } // namespace marlin
- torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm,
- int64_t size_k, int64_t size_n,
- int64_t num_bits) {
- TORCH_CHECK_NOT_IMPLEMENTED(
- false, "marlin_repack_from_gptq(..) requires CUDA_ARCH >= 8.0");
- return torch::empty({1, 1});
- }
- #else
- namespace marlin {
- template <int const num_threads, int const num_bits>
- __global__ void awq_marlin_repack_kernel(
- uint32_t const* __restrict__ b_q_weight_ptr, uint32_t* __restrict__ out_ptr,
- int size_k, int size_n) {
- constexpr int pack_factor = 32 / num_bits;
- int k_tiles = size_k / tile_k_size;
- int n_tiles = size_n / tile_n_size;
- int block_k_tiles = div_ceil(k_tiles, gridDim.x);
- int start_k_tile = blockIdx.x * block_k_tiles;
- if (start_k_tile >= k_tiles) {
- return;
- }
- int finish_k_tile = min(start_k_tile + block_k_tiles, k_tiles);
- // Wait until the next thread tile has been loaded to shared memory.
- auto wait_for_stage = [&]() {
- // We only have `stages - 2` active fetches since we are double buffering
- // and can only issue the next fetch when it is guaranteed that the previous
- // shared memory load is fully complete (as it may otherwise be
- // overwritten).
- cp_async_wait<repack_stages - 2>();
- __syncthreads();
- };
- extern __shared__ int4 sh[];
- constexpr int tile_n_ints = tile_n_size / pack_factor;
- constexpr int stage_n_threads = tile_n_ints / 4;
- constexpr int stage_k_threads = tile_k_size;
- constexpr int stage_size = stage_k_threads * stage_n_threads;
- auto fetch_to_shared = [&](int pipe, int k_tile_id, int n_tile_id) {
- if (n_tile_id >= n_tiles) {
- cp_async_fence();
- return;
- }
- int first_n = n_tile_id * tile_n_size;
- int first_n_packed = first_n / pack_factor;
- int4* sh_ptr = sh + stage_size * pipe;
- if (threadIdx.x < stage_size) {
- int k_id = threadIdx.x / stage_n_threads;
- int n_id = threadIdx.x % stage_n_threads;
- int first_k = k_tile_id * tile_k_size;
- cp_async4(&sh_ptr[k_id * stage_n_threads + n_id],
- reinterpret_cast<int4 const*>(
- &(b_q_weight_ptr[(first_k + k_id) * (size_n / pack_factor) +
- first_n_packed + (n_id * 4)])));
- }
- cp_async_fence();
- };
- auto repack_tile = [&](int pipe, int k_tile_id, int n_tile_id) {
- if (n_tile_id >= n_tiles) {
- return;
- }
- int warp_id = threadIdx.x / 32;
- int th_id = threadIdx.x % 32;
- if (warp_id >= 4) {
- return;
- }
- int tc_col = th_id / 4;
- int tc_row = (th_id % 4) * 2;
- constexpr int tc_offsets[4] = {0, 1, 8, 9};
- int cur_n = warp_id * 16 + tc_col;
- int cur_n_packed = cur_n / pack_factor;
- int cur_n_pos = cur_n % pack_factor;
- constexpr int sh_stride = tile_n_ints;
- constexpr uint32_t mask = (1 << num_bits) - 1;
- int4* sh_stage_ptr = sh + stage_size * pipe;
- uint32_t* sh_stage_int_ptr = reinterpret_cast<uint32_t*>(sh_stage_ptr);
- // Undo interleaving
- int cur_n_pos_unpacked;
- if constexpr (num_bits == 4) {
- constexpr int undo_pack[8] = {0, 4, 1, 5, 2, 6, 3, 7};
- cur_n_pos_unpacked = undo_pack[cur_n_pos];
- } else {
- constexpr int undo_pack[4] = {0, 2, 1, 3};
- cur_n_pos_unpacked = undo_pack[cur_n_pos];
- }
- uint32_t vals[8];
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- int cur_elem = tc_row + tc_offsets[i];
- int packed_src_0 = sh_stage_int_ptr[cur_n_packed + sh_stride * cur_elem];
- int packed_src_1 = sh_stage_int_ptr[cur_n_packed + (8 / pack_factor) +
- sh_stride * cur_elem];
- vals[i] = (packed_src_0 >> (cur_n_pos_unpacked * num_bits)) & mask;
- vals[4 + i] = (packed_src_1 >> (cur_n_pos_unpacked * num_bits)) & mask;
- }
- constexpr int tile_size = tile_k_size * tile_n_size / pack_factor;
- int out_offset = (k_tile_id * n_tiles + n_tile_id) * tile_size;
- // Result of:
- // https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h
- if constexpr (num_bits == 4) {
- constexpr int pack_idx[8] = {0, 2, 4, 6, 1, 3, 5, 7};
- uint32_t res = 0;
- #pragma unroll
- for (int i = 0; i < 8; i++) {
- res |= vals[pack_idx[i]] << (i * 4);
- }
- out_ptr[out_offset + th_id * 4 + warp_id] = res;
- } else {
- constexpr int pack_idx[4] = {0, 2, 1, 3};
- uint32_t res1 = 0;
- uint32_t res2 = 0;
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- res1 |= vals[pack_idx[i]] << (i * 8);
- res2 |= vals[4 + pack_idx[i]] << (i * 8);
- }
- out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 0] = res1;
- out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 1] = res2;
- }
- };
- auto start_pipes = [&](int k_tile_id, int n_tile_id) {
- #pragma unroll
- for (int pipe = 0; pipe < repack_stages - 1; pipe++) {
- fetch_to_shared(pipe, k_tile_id, n_tile_id + pipe);
- }
- wait_for_stage();
- };
- #pragma unroll
- for (int k_tile_id = start_k_tile; k_tile_id < finish_k_tile; k_tile_id++) {
- int n_tile_id = 0;
- start_pipes(k_tile_id, n_tile_id);
- while (n_tile_id < n_tiles) {
- #pragma unroll
- for (int pipe = 0; pipe < repack_stages; pipe++) {
- fetch_to_shared((pipe + repack_stages - 1) % repack_stages, k_tile_id,
- n_tile_id + pipe + repack_stages - 1);
- repack_tile(pipe, k_tile_id, n_tile_id + pipe);
- wait_for_stage();
- }
- n_tile_id += repack_stages;
- }
- }
- }
- } // namespace marlin
- #define CALL_IF(NUM_BITS) \
- else if (num_bits == NUM_BITS) { \
- cudaFuncSetAttribute( \
- marlin::awq_marlin_repack_kernel<marlin::repack_threads, NUM_BITS>, \
- cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \
- marlin::awq_marlin_repack_kernel<marlin::repack_threads, NUM_BITS> \
- <<<blocks, marlin::repack_threads, max_shared_mem, stream>>>( \
- b_q_weight_ptr, out_ptr, size_k, size_n); \
- }
- torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, int64_t size_k,
- int64_t size_n, int64_t num_bits) {
- // Verify compatibility with marlin tile of 16x64
- TORCH_CHECK(size_k % marlin::tile_k_size == 0, "size_k = ", size_k,
- " is not divisible by tile_k_size = ", marlin::tile_k_size);
- TORCH_CHECK(size_n % marlin::tile_n_size == 0, "size_n = ", size_n,
- " is not divisible by tile_n_size = ", marlin::tile_n_size);
- TORCH_CHECK(num_bits == 4 || num_bits == 8,
- "num_bits must be 4 or 8. Got = ", num_bits);
- int const pack_factor = 32 / num_bits;
- // Verify B
- TORCH_CHECK(b_q_weight.size(0) == size_k,
- "b_q_weight.size(0) = ", b_q_weight.size(0),
- " is not size_k = ", size_k);
- TORCH_CHECK((size_n / pack_factor) == b_q_weight.size(1),
- "Shape mismatch: b_q_weight.size(1) = ", b_q_weight.size(1),
- ", size_n = ", size_n, ", pack_factor = ", pack_factor);
- // Verify device and strides
- TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU");
- TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous");
- TORCH_CHECK(b_q_weight.dtype() == at::kInt, "b_q_weight type is not kInt");
- // Alloc buffers
- const at::cuda::OptionalCUDAGuard device_guard(device_of(b_q_weight));
- auto options = torch::TensorOptions()
- .dtype(b_q_weight.dtype())
- .device(b_q_weight.device());
- torch::Tensor out = torch::empty(
- {size_k / marlin::tile_size, size_n * marlin::tile_size / pack_factor},
- options);
- // Get ptrs
- uint32_t const* b_q_weight_ptr =
- reinterpret_cast<uint32_t const*>(b_q_weight.data_ptr());
- uint32_t* out_ptr = reinterpret_cast<uint32_t*>(out.data_ptr());
- // Get dev info
- int dev = b_q_weight.get_device();
- cudaStream_t stream = at::cuda::getCurrentCUDAStream(dev);
- int blocks;
- cudaDeviceGetAttribute(&blocks, cudaDevAttrMultiProcessorCount, dev);
- int max_shared_mem = 0;
- cudaDeviceGetAttribute(&max_shared_mem,
- cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
- TORCH_CHECK(max_shared_mem > 0);
- if (false) {
- }
- CALL_IF(4)
- CALL_IF(8)
- else {
- TORCH_CHECK(false, "Unsupported repack config: num_bits = ", num_bits);
- }
- return out;
- }
- #endif
- torch::Tensor awq_marlin_repack_meta(torch::Tensor& b_q_weight,
- c10::SymInt size_k, c10::SymInt size_n,
- int64_t num_bits) {
- int const pack_factor = 32 / num_bits;
- auto options = torch::TensorOptions()
- .dtype(b_q_weight.dtype())
- .device(b_q_weight.device());
- return torch::empty_symint(
- {size_k / marlin::tile_size, size_n * marlin::tile_size / pack_factor},
- options);
- }
|