123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305 |
- /*
- * Modified by Neural Magic
- * Copyright (C) Marlin.2024 Elias Frantar
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * Adapted from https://github.com/IST-DASLab/marlin
- */
- #include "../gptq_marlin/marlin.cuh"
- #include "../gptq_marlin/marlin_dtypes.cuh"
- using namespace marlin;
- #define STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t) \
- static_assert(std::is_same<scalar_t, half>::value || \
- std::is_same<scalar_t, nv_bfloat16>::value, \
- "only float16 and bfloat16 is supported");
- template <typename T>
- inline std::string str(T x) {
- return std::to_string(x);
- }
- namespace fp8_marlin {
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
- template <typename scalar_t, // compute dtype, half or nv_float16
- const int num_bits, // number of bits used for weights
- const int threads, // number of threads in a threadblock
- const int thread_m_blocks, // number of 16x16 blocks in the m
- // dimension (batchsize) of the
- // threadblock
- const int thread_n_blocks, // same for n dimension (output)
- const int thread_k_blocks, // same for k dimension (reduction)
- const int stages, // number of stages for the async global->shared
- // fetch pipeline
- const int group_blocks = -1 // number of consecutive 16x16 blocks
- // with a separate quantization scale
- >
- __global__ void Marlin(
- const int4* __restrict__ A, // fp16 input matrix of shape mxk
- const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn
- int4* __restrict__ C, // fp16 output buffer of shape mxn
- const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape
- // (k/groupsize)xn
- int num_groups, // number of scale groups per output channel
- int prob_m, // batch dimension m
- int prob_n, // output dimension n
- int prob_k, // reduction dimension k
- int* locks // extra global storage for barrier synchronization
- ) {}
- } // namespace fp8_marlin
- torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
- torch::Tensor& b_scales, torch::Tensor& workspace,
- int64_t num_bits, int64_t size_m, int64_t size_n,
- int64_t size_k) {
- TORCH_CHECK_NOT_IMPLEMENTED(false,
- "marlin_gemm(..) requires CUDA_ARCH >= 8.0");
- return torch::empty({1, 1});
- }
- #else
- // m16n8k16 tensor core mma instruction with fp16 inputs and fp32
- // output/accumulation.
- template <typename scalar_t>
- __device__ inline void mma(const typename ScalarType<scalar_t>::FragA& a_frag,
- const typename ScalarType<scalar_t>::FragB& frag_b,
- typename ScalarType<scalar_t>::FragC& frag_c) {
- const uint32_t* a = reinterpret_cast<const uint32_t*>(&a_frag);
- const uint32_t* b = reinterpret_cast<const uint32_t*>(&frag_b);
- float* c = reinterpret_cast<float*>(&frag_c);
- if constexpr (std::is_same<scalar_t, half>::value) {
- asm volatile(
- "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 "
- "{%0,%1,%2,%3}, {%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};\n"
- : "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3])
- : "r"(a[0]), "r"(a[1]), "r"(a[2]), "r"(a[3]), "r"(b[0]), "r"(b[1]),
- "f"(c[0]), "f"(c[1]), "f"(c[2]), "f"(c[3]));
- } else if constexpr (std::is_same<scalar_t, nv_bfloat16>::value) {
- asm volatile(
- "mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 "
- "{%0,%1,%2,%3}, {%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};\n"
- : "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3])
- : "r"(a[0]), "r"(a[1]), "r"(a[2]), "r"(a[3]), "r"(b[0]), "r"(b[1]),
- "f"(c[0]), "f"(c[1]), "f"(c[2]), "f"(c[3]));
- } else {
- STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t);
- }
- }
- // Instruction for loading a full 16x16 matrix fragment of operand A from shared
- // memory, directly in tensor core layout.
- template <typename scalar_t>
- __device__ inline void ldsm4(typename ScalarType<scalar_t>::FragA& frag_a,
- const void* smem_ptr) {
- uint32_t* a = reinterpret_cast<uint32_t*>(&frag_a);
- uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
- asm volatile("ldmatrix.sync.aligned.m8n8.x4.shared.b16 {%0,%1,%2,%3}, [%4];\n"
- : "=r"(a[0]), "=r"(a[1]), "=r"(a[2]), "=r"(a[3])
- : "r"(smem));
- }
- // Fast FP8ToFp16/FP8ToBf16: Efficiently dequantize 8bit fp8_e4m3 values to fp16
- // bf16 Reference:
- // - FP16:
- // https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L53-L85
- // - BF16:
- // https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L125-L175
- template <typename scalar_t>
- __device__ inline typename ScalarType<scalar_t>::FragB dequant_8bit(int q) {
- STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t);
- }
- template <>
- __device__ inline typename ScalarType<half>::FragB dequant_8bit<half>(int q) {
- // Constants for FP8 (E4M3) and FP16 formats
- constexpr int FP8_EXPONENT = 4, FP8_MANTISSA = 3, FP16_EXPONENT = 5;
- constexpr int RIGHT_SHIFT = FP16_EXPONENT - FP8_EXPONENT;
- // Calculate MASK for extracting mantissa and exponent
- constexpr int MASK1 = 0x80000000;
- constexpr int MASK2 = MASK1 >> (FP8_EXPONENT + FP8_MANTISSA);
- constexpr int MASK3 = MASK2 & 0x7fffffff;
- constexpr int MASK = MASK3 | (MASK3 >> 16);
- // Final MASK value: 0x7F007F00
- // Extract and shift FP8 values to FP16 format
- int Out1 = (q & 0x80008000) | ((q & MASK) >> RIGHT_SHIFT);
- int Out2 = ((q << 8) & 0x80008000) | (((q << 8) & MASK) >> RIGHT_SHIFT);
- // Construct and apply exponent bias
- constexpr int BIAS_OFFSET =
- (1 << (FP16_EXPONENT - 1)) - (1 << (FP8_EXPONENT - 1));
- const half2 bias_reg = __float2half2_rn(float(1 << BIAS_OFFSET));
- // Convert to half2 and apply bias
- typename ScalarType<half>::FragB frag_b;
- // Note: reverse indexing is intentional because weights are permuted
- frag_b[1] = __hmul2(*reinterpret_cast<const half2*>(&Out1), bias_reg);
- frag_b[0] = __hmul2(*reinterpret_cast<const half2*>(&Out2), bias_reg);
- return frag_b;
- }
- template <>
- __device__ inline typename ScalarType<nv_bfloat16>::FragB
- dequant_8bit<nv_bfloat16>(int q) {
- // Constants for FP8 (E4M3) and BF16 formats
- constexpr int FP8_EXPONENT = 4, FP8_MANTISSA = 3, BF16_EXPONENT = 8;
- constexpr int RIGHT_SHIFT = BF16_EXPONENT - FP8_EXPONENT;
- // Calculate MASK for extracting mantissa and exponent
- constexpr int MASK1 = 0x80000000;
- constexpr int MASK2 = MASK1 >> (FP8_EXPONENT + FP8_MANTISSA);
- constexpr int MASK3 = MASK2 & 0x7fffffff;
- constexpr int MASK = MASK3 | (MASK3 >> 16);
- // Final MASK value: 0x7F007F00
- // Extract and shift FP8 values to BF16 format
- int Out1 = (q & 0x80008000) | ((q & MASK) >> RIGHT_SHIFT);
- int Out2 = ((q << 8) & 0x80008000) | (((q << 8) & MASK) >> RIGHT_SHIFT);
- // Construct and apply exponent bias
- constexpr int BIAS_OFFSET =
- (1 << (BF16_EXPONENT - 1)) - (1 << (FP8_EXPONENT - 1));
- // Add 127 (float exponent bias) to BIAS_OFFSET and shift to float exponent
- // position
- constexpr uint32_t BIAS = (BIAS_OFFSET + 127) << 23;
- const nv_bfloat162 bias_reg =
- __float2bfloat162_rn(*reinterpret_cast<const float*>(&BIAS));
- // Convert to bfloat162 and apply bias
- typename ScalarType<nv_bfloat16>::FragB frag_b;
- // Note: reverse indexing is intentional because weights are permuted
- frag_b[1] = __hmul2(*reinterpret_cast<const nv_bfloat162*>(&Out1), bias_reg);
- frag_b[0] = __hmul2(*reinterpret_cast<const nv_bfloat162*>(&Out2), bias_reg);
- return frag_b;
- }
- // Multiply dequantized values by the corresponding quantization scale; used
- // only for grouped quantization.
- template <typename scalar_t>
- __device__ inline void scale(typename ScalarType<scalar_t>::FragB& frag_b,
- typename ScalarType<scalar_t>::FragS& frag_s,
- int i) {
- using scalar_t2 = typename ScalarType<scalar_t>::scalar_t2;
- scalar_t2 s =
- ScalarType<scalar_t>::num2num2(reinterpret_cast<scalar_t*>(&frag_s)[i]);
- frag_b[0] = __hmul2(frag_b[0], s);
- frag_b[1] = __hmul2(frag_b[1], s);
- }
- // Given 2 floats multiply by 2 scales (halves)
- template <typename scalar_t>
- __device__ inline void scale_float(float* c,
- typename ScalarType<scalar_t>::FragS& s) {
- scalar_t* s_ptr = reinterpret_cast<scalar_t*>(&s);
- c[0] = __fmul_rn(c[0], ScalarType<scalar_t>::num2float(s_ptr[0]));
- c[1] = __fmul_rn(c[1], ScalarType<scalar_t>::num2float(s_ptr[1]));
- }
- // Wait until barrier reaches `count`, then lock for current threadblock.
- __device__ inline void barrier_acquire(int* lock, int count) {
- if (threadIdx.x == 0) {
- int state = -1;
- do
- // Guarantee that subsequent writes by this threadblock will be visible
- // globally.
- asm volatile("ld.global.acquire.gpu.b32 %0, [%1];\n"
- : "=r"(state)
- : "l"(lock));
- while (state != count);
- }
- __syncthreads();
- }
- // Release barrier and increment visitation count.
- __device__ inline void barrier_release(int* lock, bool reset = false) {
- __syncthreads();
- if (threadIdx.x == 0) {
- if (reset) {
- lock[0] = 0;
- return;
- }
- int val = 1;
- // Make sure that all writes since acquiring this barrier are visible
- // globally, while releasing the barrier.
- asm volatile("fence.acq_rel.gpu;\n");
- asm volatile("red.relaxed.gpu.global.add.s32 [%0], %1;\n"
- :
- : "l"(lock), "r"(val));
- }
- }
- template <typename scalar_t, // compute dtype, half or nv_float16
- const int num_bits, // number of bits used for weights
- const int threads, // number of threads in a threadblock
- const int thread_m_blocks, // number of 16x16 blocks in the m
- // dimension (batchsize) of the
- // threadblock
- const int thread_n_blocks, // same for n dimension (output)
- const int thread_k_blocks, // same for k dimension (reduction)
- const int stages, // number of stages for the async global->shared
- // fetch pipeline
- const int group_blocks = -1 // number of consecutive 16x16 blocks
- // with a separate quantization scale
- >
- __global__ void Marlin(
- const int4* __restrict__ A, // fp16 input matrix of shape mxk
- const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn
- int4* __restrict__ C, // fp16 output buffer of shape mxn
- const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape
- // (k/groupsize)xn
- int num_groups, // number of scale groups per output channel
- int prob_m, // batch dimension m
- int prob_n, // output dimension n
- int prob_k, // reduction dimension k
- int* locks // extra global storage for barrier synchronization
- ) {
- // Each threadblock processes one "stripe" of the B matrix with (roughly) the
- // same size, which might involve multiple column "slices" (of width 16 *
- // `thread_n_blocks`). Stripes are defined as shown in the 3x3 matrix 5 SM
- // example:
- // 0 1 3
- // 0 2 3
- // 1 2 4
- // While this kind of partitioning makes things somewhat more complicated, it
- // ensures good utilization of all SMs for many kinds of shape and GPU
- // configurations, while requiring as few slow global cross-threadblock
- // reductions as possible.
- using Dtype = ScalarType<scalar_t>;
- using scalar_t2 = typename ScalarType<scalar_t>::scalar_t2;
- using FragA = typename ScalarType<scalar_t>::FragA;
- using FragB = typename ScalarType<scalar_t>::FragB;
- using FragC = typename ScalarType<scalar_t>::FragC;
- using FragS = typename ScalarType<scalar_t>::FragS;
- constexpr int pack_factor = 32 / num_bits;
- // For larger GEMMs we run multiple batchsize 64 versions in parallel for a
- // better partitioning with less reductions
- int parallel = 1;
- if (prob_m > 16 * thread_m_blocks) {
- parallel = prob_m / (16 * thread_m_blocks);
- prob_m = 16 * thread_m_blocks;
- }
- int k_tiles = prob_k / 16 / thread_k_blocks;
- int n_tiles = prob_n / 16 / thread_n_blocks;
- int iters = div_ceil(k_tiles * n_tiles * parallel, gridDim.x);
- int slice_row = (iters * blockIdx.x) % k_tiles;
- int slice_col_par = (iters * blockIdx.x) / k_tiles;
- int slice_col = slice_col_par;
- int slice_iters; // number of threadblock tiles in the current slice
- int slice_count =
- 0; // total number of active threadblocks in the current slice
- int slice_idx; // index of threadblock in current slice; numbered bottom to
- // top
- // We can easily implement parallel problem execution by just remapping
- // indices and advancing global pointers
- if (slice_col_par >= n_tiles) {
- A += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_k / 8;
- C += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_n / 8;
- locks += (slice_col_par / n_tiles) * n_tiles;
- slice_col = slice_col_par % n_tiles;
- }
- // Compute all information about the current slice which is required for
- // synchronization.
- auto init_slice = [&]() {
- slice_iters =
- iters * (blockIdx.x + 1) - (k_tiles * slice_col_par + slice_row);
- if (slice_iters < 0 || slice_col_par >= n_tiles * parallel) slice_iters = 0;
- if (slice_iters == 0) return;
- if (slice_row + slice_iters > k_tiles) slice_iters = k_tiles - slice_row;
- slice_count = 1;
- slice_idx = 0;
- int col_first = iters * div_ceil(k_tiles * slice_col_par, iters);
- if (col_first <= k_tiles * (slice_col_par + 1)) {
- int col_off = col_first - k_tiles * slice_col_par;
- slice_count = div_ceil(k_tiles - col_off, iters);
- if (col_off > 0) slice_count++;
- int delta_first = iters * blockIdx.x - col_first;
- if (delta_first < 0 || (col_off == 0 && delta_first == 0))
- slice_idx = slice_count - 1;
- else {
- slice_idx = slice_count - 1 - delta_first / iters;
- if (col_off > 0) slice_idx--;
- }
- }
- if (slice_col == n_tiles) {
- A += 16 * thread_m_blocks * prob_k / 8;
- C += 16 * thread_m_blocks * prob_n / 8;
- locks += n_tiles;
- slice_col = 0;
- }
- };
- init_slice();
- // A sizes/strides
- // stride of the A matrix in global memory
- int a_gl_stride = prob_k / 8;
- // stride of an A matrix tile in shared memory
- constexpr int a_sh_stride = 16 * thread_k_blocks / 8;
- // delta between subsequent A tiles in global memory
- constexpr int a_gl_rd_delta_o = 16 * thread_k_blocks / 8;
- // between subsequent accesses within a tile
- int a_gl_rd_delta_i = a_gl_stride * (threads / a_gl_rd_delta_o);
- // between shared memory writes
- constexpr int a_sh_wr_delta = a_sh_stride * (threads / a_gl_rd_delta_o);
- // between shared memory tile reads
- constexpr int a_sh_rd_delta_o = 2 * ((threads / 32) / (thread_n_blocks / 4));
- // within a shared memory tile
- constexpr int a_sh_rd_delta_i = a_sh_stride * 16;
- // overall size of a tile
- constexpr int a_sh_stage = a_sh_stride * (16 * thread_m_blocks);
- // number of shared write iterations for a tile
- constexpr int a_sh_wr_iters = div_ceil(a_sh_stage, a_sh_wr_delta);
- // B sizes/strides
- int b_gl_stride = 16 * prob_n / (pack_factor * 4);
- constexpr int b_sh_stride = ((thread_n_blocks * 16) * 16 / pack_factor) / 4;
- constexpr int b_thread_vecs = num_bits == 4 ? 1 : 2;
- constexpr int b_sh_stride_threads = b_sh_stride / b_thread_vecs;
- int b_gl_rd_delta_o = b_gl_stride * thread_k_blocks;
- int b_gl_rd_delta_i = b_gl_stride * (threads / b_sh_stride_threads);
- constexpr int b_sh_wr_delta = threads * b_thread_vecs;
- constexpr int b_sh_rd_delta = threads * b_thread_vecs;
- constexpr int b_sh_stage = b_sh_stride * thread_k_blocks;
- constexpr int b_sh_wr_iters = b_sh_stage / b_sh_wr_delta;
- // Scale sizes/strides without act_order
- int s_gl_stride = prob_n / 8;
- constexpr int s_sh_stride = 16 * thread_n_blocks / 8;
- // Scale size/strides with act_order
- constexpr int tb_k = 16 * thread_k_blocks;
- constexpr int g_idx_stage = 0;
- // constexpr int act_s_row_stride = 1;
- // int act_s_col_stride = act_s_row_stride * num_groups;
- int act_s_col_stride = 1;
- int act_s_col_warp_stride = act_s_col_stride * 8;
- int tb_n_warps = thread_n_blocks / 4;
- int act_s_col_tb_stride = act_s_col_warp_stride * tb_n_warps;
- // Global A read index of current thread.
- int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) +
- (threadIdx.x % a_gl_rd_delta_o);
- a_gl_rd += a_gl_rd_delta_o * slice_row;
- // Shared write index of current thread.
- int a_sh_wr = a_sh_stride * (threadIdx.x / a_gl_rd_delta_o) +
- (threadIdx.x % a_gl_rd_delta_o);
- // Shared read index.
- int a_sh_rd =
- a_sh_stride * ((threadIdx.x % 32) % 16) + (threadIdx.x % 32) / 16;
- a_sh_rd += 2 * ((threadIdx.x / 32) / (thread_n_blocks / 4));
- int b_gl_rd = b_gl_stride * (threadIdx.x / b_sh_stride_threads) +
- (threadIdx.x % b_sh_stride_threads) * b_thread_vecs;
- b_gl_rd += b_sh_stride * slice_col;
- b_gl_rd += b_gl_rd_delta_o * slice_row;
- int b_sh_wr = threadIdx.x * b_thread_vecs;
- int b_sh_rd = threadIdx.x * b_thread_vecs;
- // For act_order
- int slice_k_start = tb_k * slice_row;
- int slice_k_start_shared_fetch = slice_k_start;
- int slice_n_offset = act_s_col_tb_stride * slice_col;
- // No act_order
- int s_gl_rd = s_sh_stride * slice_col + threadIdx.x;
- int s_sh_wr = threadIdx.x;
- bool s_sh_wr_pred = threadIdx.x < s_sh_stride;
- // We scale a `half2` tile in row-major layout for column-wise quantization.
- int s_sh_rd =
- 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + (threadIdx.x % 32) % 4;
- // Precompute which thread should not read memory in which iterations; this is
- // needed if there are more threads than required for a certain tilesize or
- // when the batchsize is not a multiple of 16.
- bool a_sh_wr_pred[a_sh_wr_iters];
- #pragma unroll
- for (int i = 0; i < a_sh_wr_iters; i++)
- a_sh_wr_pred[i] = a_sh_wr_delta * i + a_sh_wr < a_sh_stride * prob_m;
- // To ensure that writing and reading A tiles to/from shared memory, the
- // latter in fragment format, is fully bank conflict free, we need to use a
- // rather fancy XOR-based layout. The key here is that neither reads nor
- // writes of the 16-byte `int4` blocks of 8 consecutive threads involve the
- // same shared memory banks. Further, it seems (based on NSight-Compute) that
- // each warp must also write a consecutive memory segment?
- auto transform_a = [&](int i) {
- int row = i / a_gl_rd_delta_o;
- return a_gl_rd_delta_o * row + (i % a_gl_rd_delta_o) ^ row;
- };
- // Since the computation of this remapping is non-trivial and, due to our main
- // loop unrolls, all shared memory accesses are static, we simply precompute
- // both transformed reads and writes.
- int a_sh_wr_trans[a_sh_wr_iters];
- #pragma unroll
- for (int i = 0; i < a_sh_wr_iters; i++)
- a_sh_wr_trans[i] = transform_a(a_sh_wr_delta * i + a_sh_wr);
- int a_sh_rd_trans[b_sh_wr_iters][thread_m_blocks];
- #pragma unroll
- for (int i = 0; i < b_sh_wr_iters; i++) {
- #pragma unroll
- for (int j = 0; j < thread_m_blocks; j++)
- a_sh_rd_trans[i][j] =
- transform_a(a_sh_rd_delta_o * i + a_sh_rd_delta_i * j + a_sh_rd);
- }
- // Since B-accesses have non-constant stride they have to be computed at
- // runtime; we break dependencies between subsequent accesses with a tile by
- // maintining multiple pointers (we have enough registers), a tiny
- // optimization.
- const int4* B_ptr[b_sh_wr_iters];
- #pragma unroll
- for (int i = 0; i < b_sh_wr_iters; i++)
- B_ptr[i] = B + b_gl_rd_delta_i * i + b_gl_rd;
- extern __shared__ int4 sh[];
- // Shared memory storage for global fetch pipelines.
- int4* sh_a = sh;
- int4* sh_b = sh_a + (stages * a_sh_stage);
- int4* sh_g_idx = sh_b + (stages * b_sh_stage);
- int4* sh_s = sh_g_idx + (stages * g_idx_stage);
- // Register storage for double buffer of shared memory reads.
- FragA frag_a[2][thread_m_blocks];
- I4 frag_b_quant[2][b_thread_vecs];
- FragC frag_c[thread_m_blocks][4][2];
- FragS frag_s[2][4];
- // Zero accumulators.
- auto zero_accums = [&]() {
- #pragma unroll
- for (int i = 0; i < thread_m_blocks * 4 * 2 * 4; i++)
- reinterpret_cast<float*>(frag_c)[i] = 0;
- };
- int sh_first_group_id = -1;
- int sh_num_groups = -1;
- constexpr int sh_max_num_groups = 32;
- auto fetch_scales_to_shared = [&](bool is_async, int first_group_id,
- int last_group_id) {
- sh_first_group_id = first_group_id;
- sh_num_groups = last_group_id - first_group_id + 1;
- if (sh_num_groups < sh_max_num_groups) {
- sh_num_groups = sh_max_num_groups;
- }
- if (sh_first_group_id + sh_num_groups > num_groups) {
- sh_num_groups = num_groups - sh_first_group_id;
- }
- int row_offset = first_group_id * s_gl_stride;
- if (is_async) {
- for (int i = 0; i < sh_num_groups; i++) {
- if (threadIdx.x < s_sh_stride) {
- cp_async4_pred(&sh_s[(i * s_sh_stride) + threadIdx.x],
- &scales_ptr[row_offset + (i * s_gl_stride) +
- slice_n_offset + threadIdx.x]);
- }
- }
- } else {
- for (int i = 0; i < sh_num_groups; i++) {
- if (threadIdx.x < s_sh_stride) {
- sh_s[(i * s_sh_stride) + threadIdx.x] =
- scales_ptr[row_offset + (i * s_gl_stride) + slice_n_offset +
- threadIdx.x];
- }
- }
- }
- };
- // Asynchronously fetch the next A, B and s tile from global to the next
- // shared memory pipeline location.
- auto fetch_to_shared = [&](int pipe, int a_off, bool pred = true) {
- if (pred) {
- int4* sh_a_stage = sh_a + a_sh_stage * pipe;
- #pragma unroll
- for (int i = 0; i < a_sh_wr_iters; i++) {
- cp_async4_pred(
- &sh_a_stage[a_sh_wr_trans[i]],
- &A[a_gl_rd_delta_i * i + a_gl_rd + a_gl_rd_delta_o * a_off],
- a_sh_wr_pred[i]);
- }
- int4* sh_b_stage = sh_b + b_sh_stage * pipe;
- #pragma unroll
- for (int i = 0; i < b_sh_wr_iters; i++) {
- #pragma unroll
- for (int j = 0; j < b_thread_vecs; j++) {
- cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr + j], B_ptr[i] + j);
- }
- B_ptr[i] += b_gl_rd_delta_o;
- }
- }
- // Insert a fence even when we are winding down the pipeline to ensure that
- // waiting is also correct at this point.
- cp_async_fence();
- };
- // Wait until the next thread tile has been loaded to shared memory.
- auto wait_for_stage = [&]() {
- // We only have `stages - 2` active fetches since we are double buffering
- // and can only issue the next fetch when it is guaranteed that the previous
- // shared memory load is fully complete (as it may otherwise be
- // overwritten).
- cp_async_wait<stages - 2>();
- __syncthreads();
- };
- // Load the next sub-tile from the current location in the shared memory pipe
- // into the current register buffer.
- auto fetch_to_registers = [&](int k, int pipe) {
- int4* sh_a_stage = sh_a + a_sh_stage * pipe;
- #pragma unroll
- for (int i = 0; i < thread_m_blocks; i++)
- ldsm4<scalar_t>(frag_a[k % 2][i],
- &sh_a_stage[a_sh_rd_trans[k % b_sh_wr_iters][i]]);
- int4* sh_b_stage = sh_b + b_sh_stage * pipe;
- #pragma unroll
- for (int i = 0; i < b_thread_vecs; i++) {
- frag_b_quant[k % 2][i] = *reinterpret_cast<I4*>(
- &sh_b_stage[b_sh_rd_delta * (k % b_sh_wr_iters) + b_sh_rd + i]);
- }
- };
- bool is_same_group[stages];
- int same_group_id[stages];
- auto init_same_group = [&](int pipe) {
- is_same_group[pipe] = false;
- same_group_id[pipe] = 0;
- return;
- };
- // Execute the actual tensor core matmul of a sub-tile.
- auto matmul = [&](int k) {
- // We have the m dimension as the inner loop in order to encourage overlapping
- // dequantization and matmul operations.
- #pragma unroll
- for (int j = 0; j < 4; j++) {
- FragB frag_b0;
- FragB frag_b1;
- int* frag_b_quant_ptr = reinterpret_cast<int*>(frag_b_quant[k % 2]);
- int b_quant_0 = frag_b_quant_ptr[j * 2 + 0];
- int b_quant_1 = frag_b_quant_ptr[j * 2 + 1];
- frag_b0 = dequant_8bit<scalar_t>(b_quant_0);
- frag_b1 = dequant_8bit<scalar_t>(b_quant_1);
- #pragma unroll
- for (int i = 0; i < thread_m_blocks; i++) {
- mma<scalar_t>(frag_a[k % 2][i], frag_b0, frag_c[i][j][0]);
- mma<scalar_t>(frag_a[k % 2][i], frag_b1, frag_c[i][j][1]);
- }
- }
- };
- // Since we slice across the k dimension of a tile in order to increase the
- // number of warps while keeping the n dimension of a tile reasonable, we have
- // multiple warps that accumulate their partial sums of the same output
- // location; which we have to reduce over in the end. We do in shared memory.
- auto thread_block_reduce = [&]() {
- constexpr int red_off = threads / b_sh_stride_threads / 2;
- if (red_off >= 1) {
- int red_idx = threadIdx.x / b_sh_stride_threads;
- constexpr int red_sh_stride = b_sh_stride_threads * 4 * 2;
- constexpr int red_sh_delta = b_sh_stride_threads;
- int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride_threads) +
- (threadIdx.x % b_sh_stride_threads);
- // Parallel logarithmic shared memory reduction. We make sure to avoid any
- // unnecessary read or write iterations, e.g., for two warps we write only
- // once by warp 1 and read only once by warp 0.
- #pragma unroll
- for (int m_block = 0; m_block < thread_m_blocks; m_block++) {
- #pragma unroll
- for (int i = red_off; i > 0; i /= 2) {
- if (i <= red_idx && red_idx < 2 * i) {
- #pragma unroll
- for (int j = 0; j < 4 * 2; j++) {
- int red_sh_wr =
- red_sh_delta * j + (red_sh_rd - red_sh_stride * i);
- if (i < red_off) {
- float* c_rd =
- reinterpret_cast<float*>(&sh[red_sh_delta * j + red_sh_rd]);
- float* c_wr = reinterpret_cast<float*>(&sh[red_sh_wr]);
- #pragma unroll
- for (int k = 0; k < 4; k++)
- reinterpret_cast<FragC*>(frag_c)[4 * 2 * m_block + j][k] +=
- c_rd[k] + c_wr[k];
- }
- sh[red_sh_wr] =
- reinterpret_cast<int4*>(&frag_c)[4 * 2 * m_block + j];
- }
- }
- __syncthreads();
- }
- if (red_idx == 0) {
- #pragma unroll
- for (int i = 0; i < 4 * 2; i++) {
- float* c_rd =
- reinterpret_cast<float*>(&sh[red_sh_delta * i + red_sh_rd]);
- #pragma unroll
- for (int j = 0; j < 4; j++)
- reinterpret_cast<FragC*>(frag_c)[4 * 2 * m_block + i][j] +=
- c_rd[j];
- }
- }
- __syncthreads();
- }
- }
- };
- // Since multiple threadblocks may process parts of the same column slice, we
- // finally have to globally reduce over the results. As the striped
- // partitioning minimizes the number of such reductions and our outputs are
- // usually rather small, we perform this reduction serially in L2 cache.
- auto global_reduce = [&](bool first = false, bool last = false) {
- // We are very careful here to reduce directly in the output buffer to
- // maximize L2 cache utilization in this step. To do this, we write out
- // results in FP16 (but still reduce with FP32 compute).
- constexpr int active_threads = 32 * thread_n_blocks / 4;
- if (threadIdx.x < active_threads) {
- int c_gl_stride = prob_n / 8;
- int c_gl_wr_delta_o = 8 * c_gl_stride;
- int c_gl_wr_delta_i = 4 * (active_threads / 32);
- int c_gl_wr = c_gl_stride * ((threadIdx.x % 32) / 4) +
- 4 * (threadIdx.x / 32) + threadIdx.x % 4;
- c_gl_wr += (2 * thread_n_blocks) * slice_col;
- constexpr int c_sh_wr_delta = active_threads;
- int c_sh_wr = threadIdx.x;
- int row = (threadIdx.x % 32) / 4;
- if (!first) {
- // Interestingly, doing direct global accesses here really seems to mess up
- // the compiler and lead to slowdowns, hence we also use async-copies even
- // though these fetches are not actually asynchronous.
- #pragma unroll
- for (int i = 0; i < thread_m_blocks * 4; i++) {
- cp_async4_pred(
- &sh[c_sh_wr + c_sh_wr_delta * i],
- &C[c_gl_wr + c_gl_wr_delta_o * (i / 2) +
- c_gl_wr_delta_i * (i % 2)],
- i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m);
- }
- cp_async_fence();
- cp_async_wait<0>();
- }
- #pragma unroll
- for (int i = 0; i < thread_m_blocks * 4; i++) {
- if (i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m) {
- if (!first) {
- int4 c_red = sh[c_sh_wr + i * c_sh_wr_delta];
- #pragma unroll
- for (int j = 0; j < 2 * 4; j++) {
- reinterpret_cast<float*>(
- &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)] +=
- Dtype::num2float(reinterpret_cast<scalar_t*>(&c_red)[j]);
- }
- }
- if (!last) {
- int4 c;
- #pragma unroll
- for (int j = 0; j < 2 * 4; j++) {
- reinterpret_cast<scalar_t*>(&c)[j] =
- Dtype::float2num(reinterpret_cast<float*>(
- &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)]);
- }
- C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2)] =
- c;
- }
- }
- }
- }
- };
- // Write out the reduce final result in the correct layout. We only actually
- // reshuffle matrix fragments in this step, the reduction above is performed
- // in fragment layout.
- auto write_result = [&]() {
- int c_gl_stride = prob_n / 8;
- constexpr int c_sh_stride = 2 * thread_n_blocks + 1;
- int c_gl_wr_delta = c_gl_stride * (threads / (2 * thread_n_blocks));
- constexpr int c_sh_rd_delta =
- c_sh_stride * (threads / (2 * thread_n_blocks));
- int c_gl_wr = c_gl_stride * (threadIdx.x / (2 * thread_n_blocks)) +
- (threadIdx.x % (2 * thread_n_blocks));
- c_gl_wr += (2 * thread_n_blocks) * slice_col;
- int c_sh_wr =
- (4 * c_sh_stride) * ((threadIdx.x % 32) / 4) + (threadIdx.x % 32) % 4;
- c_sh_wr += 32 * (threadIdx.x / 32);
- int c_sh_rd = c_sh_stride * (threadIdx.x / (2 * thread_n_blocks)) +
- (threadIdx.x % (2 * thread_n_blocks));
- int c_gl_wr_end = c_gl_stride * prob_m;
- // We first reorder in shared memory to guarantee the most efficient final
- // global write patterns
- auto write = [&](int idx, float c0, float c1, FragS& s) {
- scalar_t2 res =
- Dtype::nums2num2(Dtype::float2num(c0), Dtype::float2num(c1));
- ((scalar_t2*)sh)[idx] = res;
- };
- if (threadIdx.x / 32 < thread_n_blocks / 4) {
- #pragma unroll
- for (int i = 0; i < thread_m_blocks; i++) {
- #pragma unroll
- for (int j = 0; j < 4; j++) {
- int wr = c_sh_wr + 8 * j;
- write(wr + (4 * c_sh_stride) * 0 + 0, frag_c[i][j][0][0],
- frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0]);
- write(wr + (4 * c_sh_stride) * 8 + 0, frag_c[i][j][0][2],
- frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0]);
- write(wr + (4 * c_sh_stride) * 0 + 4, frag_c[i][j][1][0],
- frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1]);
- write(wr + (4 * c_sh_stride) * 8 + 4, frag_c[i][j][1][2],
- frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1]);
- }
- c_sh_wr += 16 * (4 * c_sh_stride);
- }
- }
- __syncthreads();
- #pragma unroll
- for (int i = 0;
- i < div_ceil(16 * thread_m_blocks, threads / (2 * thread_n_blocks));
- i++) {
- if (c_gl_wr < c_gl_wr_end) {
- C[c_gl_wr] = sh[c_sh_rd];
- c_gl_wr += c_gl_wr_delta;
- c_sh_rd += c_sh_rd_delta;
- }
- }
- };
- // Start global fetch and register load pipelines.
- auto start_pipes = [&]() {
- #pragma unroll
- for (int i = 0; i < stages - 1; i++) {
- fetch_to_shared(i, i, i < slice_iters);
- }
- zero_accums();
- wait_for_stage();
- init_same_group(0);
- fetch_to_registers(0, 0);
- a_gl_rd += a_gl_rd_delta_o * (stages - 1);
- slice_k_start_shared_fetch += tb_k * (stages - 1);
- };
- if (slice_iters) {
- start_pipes();
- }
- // Main loop.
- while (slice_iters) {
- // We unroll over both the global fetch and the register load pipeline to
- // ensure all shared memory accesses are static. Note that both pipelines
- // have even length meaning that the next iteration will always start at
- // index 0.
- #pragma unroll
- for (int pipe = 0; pipe < stages;) {
- #pragma unroll
- for (int k = 0; k < b_sh_wr_iters; k++) {
- fetch_to_registers(k + 1, pipe % stages);
- if (k == b_sh_wr_iters - 2) {
- fetch_to_shared((pipe + stages - 1) % stages, pipe,
- slice_iters >= stages);
- pipe++;
- wait_for_stage();
- init_same_group(pipe % stages);
- }
- matmul(k);
- }
- slice_iters--;
- if (slice_iters == 0) {
- break;
- }
- }
- a_gl_rd += a_gl_rd_delta_o * stages;
- slice_k_start += tb_k * stages;
- slice_k_start_shared_fetch += tb_k * stages;
- // Process results and, if necessary, proceed to the next column slice.
- // While this pattern may not be the most readable, other ways of writing
- // the loop seemed to noticeably worse performance after compilation.
- if (slice_iters == 0) {
- cp_async_wait<0>();
- bool last = slice_idx == slice_count - 1;
- // For per-column scales, we only fetch them here in the final step before
- // write-out
- if (s_sh_wr_pred) {
- cp_async4(&sh_s[s_sh_wr], &scales_ptr[s_gl_rd]);
- }
- cp_async_fence();
- thread_block_reduce();
- cp_async_wait<0>();
- __syncthreads();
- if (threadIdx.x / 32 < thread_n_blocks / 4) {
- reinterpret_cast<int4*>(&frag_s)[0] = sh_s[s_sh_rd + 0];
- reinterpret_cast<int4*>(&frag_s)[1] = sh_s[s_sh_rd + 4];
- }
- // For 8-bit channelwise, we apply the scale before the global reduction
- // that converts the fp32 results to fp16 (so that we avoid possible
- // overflow in fp16)
- if (threadIdx.x / 32 < thread_n_blocks / 4) {
- #pragma unroll
- for (int i = 0; i < thread_m_blocks; i++) {
- #pragma unroll
- for (int j = 0; j < 4; j++) {
- scale_float<scalar_t>(reinterpret_cast<float*>(&frag_c[i][j][0][0]),
- frag_s[j / 2][2 * (j % 2) + 0]);
- scale_float<scalar_t>(reinterpret_cast<float*>(&frag_c[i][j][0][2]),
- frag_s[j / 2][2 * (j % 2) + 0]);
- scale_float<scalar_t>(reinterpret_cast<float*>(&frag_c[i][j][1][0]),
- frag_s[j / 2][2 * (j % 2) + 1]);
- scale_float<scalar_t>(reinterpret_cast<float*>(&frag_c[i][j][1][2]),
- frag_s[j / 2][2 * (j % 2) + 1]);
- }
- }
- }
- if (slice_count > 1) { // only globally reduce if there is more than one
- // block in a slice
- barrier_acquire(&locks[slice_col], slice_idx);
- global_reduce(slice_idx == 0, last);
- barrier_release(&locks[slice_col], last);
- }
- if (last) // only the last block in a slice actually writes the result
- write_result();
- slice_row = 0;
- slice_col_par++;
- slice_col++;
- init_slice();
- if (slice_iters) {
- a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) +
- (threadIdx.x % a_gl_rd_delta_o);
- #pragma unroll
- for (int i = 0; i < b_sh_wr_iters; i++)
- B_ptr[i] += b_sh_stride - b_gl_rd_delta_o * k_tiles;
- if (slice_col == 0) {
- #pragma unroll
- for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride;
- }
- // Update slice k/n for scales loading
- s_gl_rd = s_sh_stride * slice_col + threadIdx.x;
- start_pipes();
- }
- }
- }
- }
- #define __CALL_IF(NUM_BITS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, \
- THREAD_K_BLOCKS, GROUP_BLOCKS, NUM_THREADS) \
- else if (num_bits == NUM_BITS && thread_m_blocks == THREAD_M_BLOCKS && \
- thread_n_blocks == THREAD_N_BLOCKS && \
- thread_k_blocks == THREAD_K_BLOCKS && \
- group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS) { \
- cudaFuncSetAttribute( \
- Marlin<scalar_t, NUM_BITS, NUM_THREADS, THREAD_M_BLOCKS, \
- THREAD_N_BLOCKS, THREAD_K_BLOCKS, pipe_stages, GROUP_BLOCKS>, \
- cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \
- Marlin<scalar_t, NUM_BITS, NUM_THREADS, THREAD_M_BLOCKS, \
- THREAD_N_BLOCKS, THREAD_K_BLOCKS, pipe_stages, GROUP_BLOCKS> \
- <<<blocks, NUM_THREADS, max_shared_mem, stream>>>( \
- A_ptr, B_ptr, C_ptr, s_ptr, num_groups, prob_m, prob_n, prob_k, \
- locks); \
- }
- typedef struct {
- int thread_k;
- int thread_n;
- int num_threads;
- } thread_config_t;
- typedef struct {
- int max_m_blocks;
- thread_config_t tb_cfg;
- } exec_config_t;
- thread_config_t small_batch_thread_configs[] = {
- // Ordered by priority
- // thread_k, thread_n, num_threads
- {128, 128, 256},
- {64, 128, 128},
- {128, 64, 128},
- };
- thread_config_t large_batch_thread_configs[] = {
- // Ordered by priority
- // thread_k, thread_n, num_threads
- {64, 256, 256},
- {64, 128, 128},
- {128, 64, 128},
- };
- int get_scales_cache_size(thread_config_t const& th_config, int prob_m,
- int prob_n, int prob_k, int num_bits,
- int group_size) {
- int tb_n = th_config.thread_n;
- // Get max scale groups per thread-block
- // Fixed for channelwise
- int tb_groups = 1;
- int tb_scales = tb_groups * tb_n * 2;
- return tb_scales * pipe_stages;
- }
- bool is_valid_cache_size(thread_config_t const& th_config, int max_m_blocks,
- int prob_m, int prob_n, int prob_k, int num_bits,
- int scales_cache_size, int max_shared_mem) {
- int pack_factor = 32 / num_bits;
- // Get B size
- int tb_k = th_config.thread_k;
- int tb_n = th_config.thread_n;
- int b_size = (tb_k * tb_n / pack_factor) * 4;
- // Get A size
- int m_blocks = div_ceil(prob_m, 16);
- int tb_max_m = 16;
- while (true) {
- if (m_blocks >= max_m_blocks) {
- tb_max_m *= max_m_blocks;
- break;
- }
- max_m_blocks--;
- if (max_m_blocks == 0) {
- TORCH_CHECK(false, "Unexpected m_blocks = ", m_blocks);
- }
- }
- int a_size = (tb_max_m * tb_k) * 2;
- float pipe_size = (a_size + b_size) * pipe_stages;
- TORCH_CHECK(max_shared_mem / 2 > scales_cache_size); // Sanity
- return pipe_size < 0.95f * (max_shared_mem - scales_cache_size);
- }
- bool is_valid_config(thread_config_t const& th_config, int max_m_blocks,
- int prob_m, int prob_n, int prob_k, int num_bits,
- int group_size, int max_shared_mem) {
- // Sanity
- if (th_config.thread_k == -1 || th_config.thread_n == -1 ||
- th_config.num_threads == -1) {
- return false;
- }
- // Verify K/N are divisible by thread K/N
- if (prob_k % th_config.thread_k != 0 || prob_n % th_config.thread_n != 0) {
- return false;
- }
- // Verify min for thread K/N
- if (th_config.thread_n < min_thread_n || th_config.thread_k < min_thread_k) {
- return false;
- }
- // num_threads must be at least 128 (= 4 warps)
- if (th_config.num_threads < 128) {
- return false;
- }
- // Determine cache for scales
- int scales_cache_size = get_scales_cache_size(th_config, prob_m, prob_n,
- prob_k, num_bits, group_size);
- // Check that pipeline fits into cache
- if (!is_valid_cache_size(th_config, max_m_blocks, prob_m, prob_n, prob_k,
- num_bits, scales_cache_size, max_shared_mem)) {
- return false;
- }
- return true;
- }
- exec_config_t determine_thread_config(int prob_m, int prob_n, int prob_k,
- int num_bits, int group_size,
- int max_shared_mem) {
- int max_m_blocks = 4;
- while (max_m_blocks > 0) {
- if (prob_m <= 16) {
- for (auto th_config : small_batch_thread_configs) {
- if (is_valid_config(th_config, max_m_blocks, prob_m, prob_n, prob_k,
- num_bits, group_size, max_shared_mem)) {
- return exec_config_t{max_m_blocks, th_config};
- }
- }
- } else {
- for (auto th_config : large_batch_thread_configs) {
- if (is_valid_config(th_config, max_m_blocks, prob_m, prob_n, prob_k,
- num_bits, group_size, max_shared_mem)) {
- return exec_config_t{max_m_blocks, th_config};
- }
- }
- }
- max_m_blocks--; // Process less M blocks per invocation to reduce cache
- // usage
- }
- return exec_config_t{0, {-1, -1, -1}};
- }
- #define CALL_IF(NUM_BITS, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
- __CALL_IF(NUM_BITS, 1, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
- __CALL_IF(NUM_BITS, 2, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
- __CALL_IF(NUM_BITS, 3, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
- __CALL_IF(NUM_BITS, 4, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS)
- template <typename scalar_t>
- void marlin_mm_f16i4(const void* A, const void* B, void* C, void* s, int prob_m,
- int prob_n, int prob_k, void* workspace, int num_bits,
- int num_groups, int group_size, int dev,
- cudaStream_t stream, int thread_k, int thread_n, int sms,
- int max_par) {
- TORCH_CHECK(num_bits == 8, "num_bits must be 8. Got = ", num_bits);
- TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m,
- ", ", prob_n, ", ", prob_k, "]");
- int tot_m = prob_m;
- int tot_m_blocks = div_ceil(tot_m, 16);
- int pad = 16 * tot_m_blocks - tot_m;
- if (sms == -1) {
- cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, dev);
- }
- int max_shared_mem = 0;
- cudaDeviceGetAttribute(&max_shared_mem,
- cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
- TORCH_CHECK(max_shared_mem > 0);
- // Set thread config
- exec_config_t exec_cfg;
- if (thread_k != -1 && thread_n != -1) {
- // User-defined config
- exec_cfg =
- exec_config_t{4, thread_config_t{thread_k, thread_n, default_threads}};
- } else {
- // Auto config
- exec_cfg = determine_thread_config(prob_m, prob_n, prob_k, num_bits,
- group_size, max_shared_mem);
- }
- TORCH_CHECK(
- exec_cfg.max_m_blocks > 0 &&
- is_valid_config(exec_cfg.tb_cfg, exec_cfg.max_m_blocks, prob_m,
- prob_n, prob_k, num_bits, group_size, max_shared_mem),
- "Invalid thread config: max_m_blocks = ", exec_cfg.max_m_blocks,
- ", thread_k = ", exec_cfg.tb_cfg.thread_k,
- ", thread_n = ", exec_cfg.tb_cfg.thread_n,
- ", num_threads = ", exec_cfg.tb_cfg.num_threads, " for MKN = [", prob_m,
- ", ", prob_k, ", ", prob_n, "] and num_bits = ", num_bits,
- ", group_size = ", group_size, ", max_shared_mem = ", max_shared_mem);
- int num_threads = exec_cfg.tb_cfg.num_threads;
- thread_k = exec_cfg.tb_cfg.thread_k;
- thread_n = exec_cfg.tb_cfg.thread_n;
- int thread_k_blocks = thread_k / 16;
- int thread_n_blocks = thread_n / 16;
- int blocks = sms;
- TORCH_CHECK(prob_n % thread_n == 0, "prob_n = ", prob_n,
- " is not divisible by thread_n = ", thread_n);
- TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k,
- " is not divisible by thread_k = ", thread_k);
- int group_blocks = -1;
- const int4* A_ptr = (const int4*)A;
- const int4* B_ptr = (const int4*)B;
- int4* C_ptr = (int4*)C;
- const int4* s_ptr = (const int4*)s;
- int* locks = (int*)workspace;
- // Main loop
- for (int i = 0; i < tot_m_blocks; i += exec_cfg.max_m_blocks) {
- int thread_m_blocks = tot_m_blocks - i;
- prob_m = tot_m - 16 * i;
- int par = 1;
- if (thread_m_blocks > exec_cfg.max_m_blocks) {
- // Note that parallel > 1 currently only works for inputs without any
- // padding
- par = (16 * thread_m_blocks - pad) / (16 * exec_cfg.max_m_blocks);
- if (par > max_par) par = max_par;
- prob_m = (16 * exec_cfg.max_m_blocks) * par;
- i += exec_cfg.max_m_blocks * (par - 1);
- thread_m_blocks = exec_cfg.max_m_blocks;
- }
- // Define kernel configurations
- if (false) {
- }
- CALL_IF(8, 32, 2, 256)
- CALL_IF(8, 16, 4, 256)
- CALL_IF(8, 8, 8, 256)
- CALL_IF(8, 8, 4, 128)
- CALL_IF(8, 4, 8, 128)
- else {
- TORCH_CHECK(false, "Unsupported shapes: MNK = [" + str(prob_m) + ", " +
- str(prob_n) + ", " + str(prob_k) + "]" +
- ", num_groups = " + str(num_groups) +
- ", group_size = " + str(group_size) +
- ", thread_m_blocks = " + str(thread_m_blocks) +
- ", thread_n_blocks = " + str(thread_n_blocks) +
- ", thread_k_blocks = " + str(thread_k_blocks));
- }
- A_ptr += 16 * thread_m_blocks * (prob_k / 8) * par;
- C_ptr += 16 * thread_m_blocks * (prob_n / 8) * par;
- }
- }
- } // namespace fp8_marlin
- torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
- torch::Tensor& b_scales, torch::Tensor& workspace,
- int64_t num_bits, int64_t size_m, int64_t size_n,
- int64_t size_k) {
- // Verify num_bits
- TORCH_CHECK(num_bits == 8, "num_bits must be 8. Got = ", num_bits);
- int pack_factor = 32 / num_bits;
- // Verify A
- TORCH_CHECK(a.size(0) == size_m, "Shape mismatch: a.size(0) = ", a.size(0),
- ", size_m = ", size_m);
- TORCH_CHECK(a.size(1) == size_k, "Shape mismatch: a.size(1) = ", a.size(1),
- ", size_k = ", size_k);
- // Verify B
- TORCH_CHECK(size_k % marlin::tile_size == 0, "size_k = ", size_k,
- " is not divisible by tile_size = ", marlin::tile_size);
- TORCH_CHECK((size_k / marlin::tile_size) == b_q_weight.size(0),
- "Shape mismatch: b_q_weight.size(0) = ", b_q_weight.size(0),
- ", size_k = ", size_k, ", tile_size = ", marlin::tile_size);
- TORCH_CHECK(b_q_weight.size(1) % marlin::tile_size == 0,
- "b_q_weight.size(1) = ", b_q_weight.size(1),
- " is not divisible by tile_size = ", marlin::tile_size);
- int actual_size_n = (b_q_weight.size(1) / marlin::tile_size) * pack_factor;
- TORCH_CHECK(size_n == actual_size_n, "size_n = ", size_n,
- ", actual_size_n = ", actual_size_n);
- // Verify device and strides
- TORCH_CHECK(a.device().is_cuda(), "A is not on GPU");
- TORCH_CHECK(a.is_contiguous(), "A is not contiguous");
- TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU");
- TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous");
- TORCH_CHECK(b_scales.device().is_cuda(), "b_scales is not on GPU");
- TORCH_CHECK(b_scales.is_contiguous(), "b_scales is not contiguous");
- // Alloc buffers
- const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
- auto options = torch::TensorOptions().dtype(a.dtype()).device(a.device());
- torch::Tensor c = torch::empty({size_m, size_n}, options);
- // thread_k: `k` size of a thread_tile in `weights` (can usually be left as
- // auto -1)
- int thread_k = -1;
- // thread_n: `n` size of a thread_tile in `weights` (can usually be left as
- // auto -1)
- int thread_n = -1;
- // sms: number of SMs to use for the kernel (can usually be left as auto -1)
- int sms = -1;
- // Detect groupsize and act_order
- int num_groups = -1;
- int group_size = -1;
- int b_rank = b_scales.sizes().size();
- TORCH_CHECK(b_rank == 2, "b_scales rank = ", b_rank, " is not 2");
- TORCH_CHECK(b_scales.size(1) == size_n, "b_scales dim 1 = ", b_scales.size(1),
- " is not size_n = ", size_n);
- // Channelwise only for FP8
- TORCH_CHECK(b_scales.size(0) == 1)
- num_groups = b_scales.size(0);
- // Verify workspace size
- TORCH_CHECK(size_n % marlin::min_thread_n == 0, "size_n = ", size_n,
- ", is not divisible by min_thread_n = ", marlin::min_thread_n);
- int min_workspace_size = (size_n / marlin::min_thread_n) * marlin::max_par;
- TORCH_CHECK(workspace.numel() >= min_workspace_size,
- "workspace.numel = ", workspace.numel(),
- " is below min_workspace_size = ", min_workspace_size);
- int dev = a.get_device();
- if (a.scalar_type() == at::ScalarType::Half) {
- fp8_marlin::marlin_mm_f16i4<half>(
- a.data_ptr<at::Half>(), b_q_weight.data_ptr(), c.data_ptr<at::Half>(),
- b_scales.data_ptr<at::Half>(), size_m, size_n, size_k,
- workspace.data_ptr(), num_bits, num_groups, group_size, dev,
- at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
- marlin::max_par);
- } else if (a.scalar_type() == at::ScalarType::BFloat16) {
- fp8_marlin::marlin_mm_f16i4<nv_bfloat16>(
- a.data_ptr<at::BFloat16>(), b_q_weight.data_ptr(),
- c.data_ptr<at::BFloat16>(), b_scales.data_ptr<at::BFloat16>(), size_m,
- size_n, size_k, workspace.data_ptr(), num_bits, num_groups, group_size,
- dev, at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
- marlin::max_par);
- } else {
- TORCH_CHECK(false, "fp8_marlin_gemm only supports bfloat16 and float16");
- }
- return c;
- }
- #endif
|