123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147 |
- #pragma once
- #include <optional>
- #include <torch/library.h>
- void paged_attention_v1(
- torch::Tensor& out, torch::Tensor& query, torch::Tensor& key_cache,
- torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
- torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
- int64_t max_seq_len, const c10::optional<torch::Tensor>& alibi_slopes,
- const std::string& kv_cache_dtype, double k_scale, double v_scale,
- const int64_t tp_rank, const int64_t blocksparse_local_blocks,
- const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
- const int64_t blocksparse_head_sliding_step);
- void paged_attention_v2(
- torch::Tensor& out, torch::Tensor& exp_sums, torch::Tensor& max_logits,
- torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache,
- torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
- torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
- int64_t max_seq_len, const c10::optional<torch::Tensor>& alibi_slopes,
- const std::string& kv_cache_dtype, double k_scale, double v_scale,
- const int64_t tp_rank, const int64_t blocksparse_local_blocks,
- const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
- const int64_t blocksparse_head_sliding_step);
- void rms_norm(torch::Tensor& out, torch::Tensor& input, torch::Tensor& weight,
- double epsilon);
- void fused_add_rms_norm(torch::Tensor& input, torch::Tensor& residual,
- torch::Tensor& weight, double epsilon);
- void rotary_embedding(torch::Tensor& positions, torch::Tensor& query,
- torch::Tensor& key, int64_t head_size,
- torch::Tensor& cos_sin_cache, bool is_neox);
- void batched_rotary_embedding(torch::Tensor& positions, torch::Tensor& query,
- torch::Tensor& key, int64_t head_size,
- torch::Tensor& cos_sin_cache, bool is_neox,
- int64_t rot_dim,
- torch::Tensor& cos_sin_cache_offsets);
- void silu_and_mul(torch::Tensor& out, torch::Tensor& input);
- void gelu_and_mul(torch::Tensor& out, torch::Tensor& input);
- void gelu_tanh_and_mul(torch::Tensor& out, torch::Tensor& input);
- void gelu_new(torch::Tensor& out, torch::Tensor& input);
- void gelu_fast(torch::Tensor& out, torch::Tensor& input);
- void gelu_quick(torch::Tensor& out, torch::Tensor& input);
- void advance_step_flashattn(int64_t num_seqs, int64_t num_queries,
- int64_t block_size, torch::Tensor& input_tokens,
- torch::Tensor& sampled_token_ids,
- torch::Tensor& input_positions,
- torch::Tensor& seq_lens,
- torch::Tensor& slot_mapping,
- torch::Tensor& block_tables);
- void advance_step_flashinfer(
- int64_t num_seqs, int64_t num_queries, int64_t block_size,
- torch::Tensor& input_tokens, torch::Tensor& sampled_token_ids,
- torch::Tensor& input_positions, torch::Tensor& seq_lens,
- torch::Tensor& slot_mapping, torch::Tensor& block_tables,
- torch::Tensor& paged_kv_indices, torch::Tensor& paged_kv_indptr,
- torch::Tensor& paged_kv_last_page_len, torch::Tensor& block_table_bounds);
- void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
- int64_t block_size, torch::Tensor sorted_token_ids,
- torch::Tensor expert_ids,
- torch::Tensor num_tokens_post_pad);
- #ifndef USE_ROCM
- using fptr_t = int64_t;
- fptr_t init_custom_ar(torch::Tensor& meta, torch::Tensor& rank_data,
- const std::vector<std::string>& handles,
- const std::vector<int64_t>& offsets, int64_t rank,
- bool full_nvlink);
- void all_reduce_reg(fptr_t _fa, torch::Tensor& inp, torch::Tensor& out);
- void all_reduce_unreg(fptr_t _fa, torch::Tensor& inp, torch::Tensor& reg_buffer,
- torch::Tensor& out);
- void dispose(fptr_t _fa);
- int64_t meta_size();
- void register_buffer(fptr_t _fa, torch::Tensor& t,
- const std::vector<std::string>& handles,
- const std::vector<int64_t>& offsets);
- std::tuple<torch::Tensor, std::vector<int64_t>> get_graph_buffer_ipc_meta(
- fptr_t _fa);
- void register_graph_buffers(fptr_t _fa, const std::vector<std::string>& handles,
- const std::vector<std::vector<int64_t>>& offsets);
- std::vector<torch::Tensor> selective_scan_fwd(
- const torch::Tensor& u, const torch::Tensor& delta, const torch::Tensor& A,
- const torch::Tensor& B, const torch::Tensor& C,
- const c10::optional<torch::Tensor>& D_,
- const c10::optional<torch::Tensor>& z_,
- const c10::optional<torch::Tensor>& delta_bias_, bool delta_softplus,
- const c10::optional<torch::Tensor>& index_,
- const c10::optional<torch::Tensor>& x);
- at::Tensor causal_conv1d_update(
- const at::Tensor& x, const at::Tensor& conv_state, const at::Tensor& weight,
- const c10::optional<at::Tensor>& bias, bool silu_activation,
- const c10::optional<at::Tensor>& conv_state_indices);
- at::Tensor causal_conv1d_fwd(const at::Tensor& x, const at::Tensor& weight,
- const c10::optional<at::Tensor>& bias_,
- const c10::optional<at::Tensor>& seq_idx_,
- const c10::optional<at::Tensor>& initial_states_,
- const c10::optional<at::Tensor>& final_states_out_,
- bool silu_activation);
- torch::Tensor permute_cols(torch::Tensor const& A, torch::Tensor const& perm);
- // Sampling kernels
- torch::Tensor sampling_from_probs(torch::Tensor probs,
- torch::Tensor uniform_samples,
- bool deterministic);
- std::vector<torch::Tensor> top_p_sampling_from_probs(
- torch::Tensor probs, torch::Tensor uniform_samples,
- std::optional<torch::Tensor> maybe_top_p_arr, double top_p_val,
- bool deterministic);
- std::vector<torch::Tensor> top_k_sampling_from_probs(
- torch::Tensor probs, torch::Tensor uniform_samples,
- std::optional<torch::Tensor> maybe_top_k_arr, int64_t top_k_val,
- bool deterministic);
- std::vector<torch::Tensor> min_p_sampling_from_probs(
- torch::Tensor probs, torch::Tensor uniform_samples,
- std::optional<torch::Tensor> maybe_min_p_arr, double min_p_val,
- bool deterministic);
- std::vector<torch::Tensor> top_k_top_p_sampling_from_probs(
- torch::Tensor probs, torch::Tensor uniform_samples,
- std::optional<torch::Tensor> maybe_top_k_arr, double top_k_val,
- std::optional<torch::Tensor> maybe_top_p_arr, double top_p_val,
- bool deterministic);
- torch::Tensor top_p_renorm_prob(torch::Tensor probs,
- std::optional<torch::Tensor> maybe_top_p_arr,
- double top_p_val);
- torch::Tensor top_k_renorm_prob(torch::Tensor probs,
- std::optional<torch::Tensor> maybe_top_k_arr,
- int64_t top_k_val);
- torch::Tensor top_k_mask_logits(torch::Tensor logits,
- std::optional<torch::Tensor> maybe_top_k_arr,
- int64_t top_k_val);
- #endif
|