123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519 |
- /*
- * Adapted from
- * https://github.com/NVIDIA/TensorRT-LLM/blob/v0.7.1/cpp/tensorrt_llm/kernels/mixtureOfExperts/moe_kernels.cu
- * Copyright (c) 2024, The PygmalionAI team.
- * Copyright (c) 2024, The vLLM team.
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION &
- * AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include <torch/all.h>
- #include <ATen/cuda/CUDAContext.h>
- #include <c10/cuda/CUDAGuard.h>
- #include "../cuda_compat.h"
- #ifndef USE_ROCM
- #include <cub/util_type.cuh>
- #include <cub/cub.cuh>
- #else
- #include <hipcub/util_type.hpp>
- #include <hipcub/hipcub.hpp>
- #endif
- #define MAX(a, b) ((a) > (b) ? (a) : (b))
- #define MIN(a, b) ((a) < (b) ? (a) : (b))
- namespace aphrodite {
- namespace moe {
- /// Aligned array type
- template <typename T,
- /// Number of elements in the array
- int N,
- /// Alignment requirement in bytes
- int Alignment = sizeof(T) * N>
- class alignas(Alignment) AlignedArray {
- float data[N];
- };
- // ====================== Softmax things ===============================
- // We have our own implementation of softmax here so we can support transposing
- // the output in the softmax kernel when we extend this module to support
- // expert-choice routing.
- template <int TPB>
- __launch_bounds__(TPB) __global__
- void moeSoftmax(const float* input, const bool* finished, float* output,
- const int num_cols) {
- using BlockReduce = cub::BlockReduce<float, TPB>;
- __shared__ typename BlockReduce::TempStorage tmpStorage;
- __shared__ float normalizing_factor;
- __shared__ float float_max;
- const int thread_row_offset = blockIdx.x * num_cols;
- cub::Sum sum;
- float threadData(-FLT_MAX);
- // Don't touch finished rows.
- if ((finished != nullptr) && finished[blockIdx.x]) {
- return;
- }
- for (int ii = threadIdx.x; ii < num_cols; ii += TPB) {
- const int idx = thread_row_offset + ii;
- threadData = max(static_cast<float>(input[idx]), threadData);
- }
- const float maxElem = BlockReduce(tmpStorage).Reduce(threadData, cub::Max());
- if (threadIdx.x == 0) {
- float_max = maxElem;
- }
- __syncthreads();
- threadData = 0;
- for (int ii = threadIdx.x; ii < num_cols; ii += TPB) {
- const int idx = thread_row_offset + ii;
- threadData += exp((static_cast<float>(input[idx]) - float_max));
- }
- const auto Z = BlockReduce(tmpStorage).Reduce(threadData, sum);
- if (threadIdx.x == 0) {
- normalizing_factor = 1.f / Z;
- }
- __syncthreads();
- for (int ii = threadIdx.x; ii < num_cols; ii += TPB) {
- const int idx = thread_row_offset + ii;
- const float val =
- exp((static_cast<float>(input[idx]) - float_max)) * normalizing_factor;
- output[idx] = val;
- }
- }
- template <int TPB>
- __launch_bounds__(TPB) __global__
- void moeTopK(const float* inputs_after_softmax, const bool* finished,
- float* output, int* indices, int* source_rows,
- const int num_experts, const int k, const int start_expert,
- const int end_expert) {
- using cub_kvp = cub::KeyValuePair<int, float>;
- using BlockReduce = cub::BlockReduce<cub_kvp, TPB>;
- __shared__ typename BlockReduce::TempStorage tmpStorage;
- cub_kvp thread_kvp;
- cub::ArgMax arg_max;
- const int num_rows = gridDim.x;
- const int block_row = blockIdx.x;
- const bool row_is_active = finished ? !finished[block_row] : true;
- const int thread_read_offset = blockIdx.x * num_experts;
- for (int k_idx = 0; k_idx < k; ++k_idx) {
- thread_kvp.key = 0;
- thread_kvp.value = -1.f; // This is OK because inputs are probabilities
- cub_kvp inp_kvp;
- for (int expert = threadIdx.x; expert < num_experts; expert += TPB) {
- const int idx = thread_read_offset + expert;
- inp_kvp.key = expert;
- inp_kvp.value = inputs_after_softmax[idx];
- for (int prior_k = 0; prior_k < k_idx; ++prior_k) {
- const int prior_winning_expert = indices[k * block_row + prior_k];
- if (prior_winning_expert == expert) {
- inp_kvp = thread_kvp;
- }
- }
- thread_kvp = arg_max(inp_kvp, thread_kvp);
- }
- const cub_kvp result_kvp =
- BlockReduce(tmpStorage).Reduce(thread_kvp, arg_max);
- if (threadIdx.x == 0) {
- // Ignore experts the node isn't responsible for with expert parallelism
- const int expert = result_kvp.key;
- const bool node_uses_expert =
- expert >= start_expert && expert < end_expert;
- const bool should_process_row = row_is_active && node_uses_expert;
- const int idx = k * block_row + k_idx;
- output[idx] = result_kvp.value;
- indices[idx] = should_process_row ? (expert - start_expert) : num_experts;
- assert(indices[idx] >= 0);
- source_rows[idx] = k_idx * num_rows + block_row;
- }
- __syncthreads();
- }
- }
- // ====================== TopK softmax things ===============================
- /*
- A Top-K gating softmax written to exploit when the number of experts in the
- MoE layers are a small power of 2. This allows us to cleanly share the rows
- among the threads in a single warp and eliminate communication between warps
- (so no need to use shared mem).
- It fuses the softmax, max and argmax into a single kernel.
- Limitations:
- 1) This implementation is intended for when the number of experts is a small
- power of 2. 2) This implementation assumes k is small, but will work for any
- k.
- */
- template <int VPT, int NUM_EXPERTS, int WARPS_PER_CTA, int BYTES_PER_LDG>
- __launch_bounds__(WARPS_PER_CTA* WARP_SIZE) __global__
- void topkGatingSoftmax(const float* input, const bool* finished,
- float* output, const int num_rows, int* indices,
- int* source_rows, const int k,
- const int start_expert, const int end_expert) {
- // We begin by enforcing compile time assertions and setting up compile time
- // constants.
- static_assert(VPT == (VPT & -VPT), "VPT must be power of 2");
- static_assert(NUM_EXPERTS == (NUM_EXPERTS & -NUM_EXPERTS),
- "NUM_EXPERTS must be power of 2");
- static_assert(BYTES_PER_LDG == (BYTES_PER_LDG & -BYTES_PER_LDG),
- "BYTES_PER_LDG must be power of 2");
- static_assert(BYTES_PER_LDG <= 16, "BYTES_PER_LDG must be leq 16");
- // Number of bytes each thread pulls in per load
- static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(float);
- static constexpr int ELTS_PER_ROW = NUM_EXPERTS;
- static constexpr int THREADS_PER_ROW = ELTS_PER_ROW / VPT;
- static constexpr int LDG_PER_THREAD = VPT / ELTS_PER_LDG;
- // Restrictions based on previous section.
- static_assert(
- VPT % ELTS_PER_LDG == 0,
- "The elements per thread must be a multiple of the elements per ldg");
- static_assert(WARP_SIZE % THREADS_PER_ROW == 0,
- "The threads per row must cleanly divide the threads per warp");
- static_assert(THREADS_PER_ROW == (THREADS_PER_ROW & -THREADS_PER_ROW),
- "THREADS_PER_ROW must be power of 2");
- static_assert(THREADS_PER_ROW <= WARP_SIZE,
- "THREADS_PER_ROW can be at most warp size");
- // We have NUM_EXPERTS elements per row. We specialize for small #experts
- static constexpr int ELTS_PER_WARP = WARP_SIZE * VPT;
- static constexpr int ROWS_PER_WARP = ELTS_PER_WARP / ELTS_PER_ROW;
- static constexpr int ROWS_PER_CTA = WARPS_PER_CTA * ROWS_PER_WARP;
- // Restrictions for previous section.
- static_assert(ELTS_PER_WARP % ELTS_PER_ROW == 0,
- "The elts per row must cleanly divide the total elt per warp");
- // ===================== From this point, we finally start computing run-time
- // variables. ========================
- // Compute CTA and warp rows. We pack multiple rows into a single warp, and a
- // block contains WARPS_PER_CTA warps. This, each block processes a chunk of
- // rows. We start by computing the start row for each block.
- const int cta_base_row = blockIdx.x * ROWS_PER_CTA;
- // Now, using the base row per thread block, we compute the base row per warp.
- const int warp_base_row = cta_base_row + threadIdx.y * ROWS_PER_WARP;
- // The threads in a warp are split into sub-groups that will work on a row.
- // We compute row offset for each thread sub-group
- const int thread_row_in_warp = threadIdx.x / THREADS_PER_ROW;
- const int thread_row = warp_base_row + thread_row_in_warp;
- // Threads with indices out of bounds should early exit here.
- if (thread_row >= num_rows) {
- return;
- }
- const bool row_is_active = finished ? !finished[thread_row] : true;
- // We finally start setting up the read pointers for each thread. First, each
- // thread jumps to the start of the row it will read.
- const float* thread_row_ptr = input + thread_row * ELTS_PER_ROW;
- // Now, we compute the group each thread belong to in order to determine the
- // first column to start loads.
- const int thread_group_idx = threadIdx.x % THREADS_PER_ROW;
- const int first_elt_read_by_thread = thread_group_idx * ELTS_PER_LDG;
- const float* thread_read_ptr = thread_row_ptr + first_elt_read_by_thread;
- // Determine the pointer type to use to read in the data depending on the
- // BYTES_PER_LDG template param. In theory, this can support all powers of 2
- // up to 16. NOTE: The original implementation uses CUTLASS aligned array
- // here. We defined our own aligned array and use it here to avoid the
- // dependency on CUTLASS.
- using AccessType = AlignedArray<float, ELTS_PER_LDG>;
- // Finally, we pull in the data from global mem
- float row_chunk[VPT];
- AccessType* row_chunk_vec_ptr = reinterpret_cast<AccessType*>(&row_chunk);
- const AccessType* vec_thread_read_ptr =
- reinterpret_cast<const AccessType*>(thread_read_ptr);
- #pragma unroll
- for (int ii = 0; ii < LDG_PER_THREAD; ++ii) {
- row_chunk_vec_ptr[ii] = vec_thread_read_ptr[ii * THREADS_PER_ROW];
- }
- // First, we perform a max reduce within the thread. We can do the max in fp16
- // safely (I think) and just convert to float afterwards for the exp + sum
- // reduction.
- float thread_max = row_chunk[0];
- #pragma unroll
- for (int ii = 1; ii < VPT; ++ii) {
- thread_max = max(thread_max, row_chunk[ii]);
- }
- // Now, we find the max within the thread group and distribute among the
- // threads. We use a butterfly reduce.
- #pragma unroll
- for (int mask = THREADS_PER_ROW / 2; mask > 0; mask /= 2) {
- thread_max = max(thread_max, APHRODITE_SHFL_XOR_SYNC_WIDTH(
- thread_max, mask, THREADS_PER_ROW));
- }
- // From this point, thread max in all the threads have the max within the row.
- // Now, we subtract the max from each element in the thread and take the exp.
- // We also compute the thread local sum.
- float row_sum = 0;
- #pragma unroll
- for (int ii = 0; ii < VPT; ++ii) {
- row_chunk[ii] = expf(row_chunk[ii] - thread_max);
- row_sum += row_chunk[ii];
- }
- // Now, we perform the sum reduce within each thread group. Similar to the max
- // reduce, we use a bufferfly pattern.
- #pragma unroll
- for (int mask = THREADS_PER_ROW / 2; mask > 0; mask /= 2) {
- row_sum += APHRODITE_SHFL_XOR_SYNC_WIDTH(row_sum, mask, THREADS_PER_ROW);
- }
- // From this point, all threads have the max and the sum for their rows in the
- // thread_max and thread_sum variables respectively. Finally, we can scale the
- // rows for the softmax. Technically, for top-k gating we don't need to
- // compute the entire softmax row. We can likely look at the maxes and only
- // compute for the top-k values in the row. However, this kernel will likely
- // not be a bottle neck and it seems better to closer match torch and find the
- // argmax after computing the softmax.
- const float reciprocal_row_sum = 1.f / row_sum;
- #pragma unroll
- for (int ii = 0; ii < VPT; ++ii) {
- row_chunk[ii] = row_chunk[ii] * reciprocal_row_sum;
- }
- // Now, softmax_res contains the softmax of the row chunk. Now, I want to find
- // the topk elements in each row, along with the max index.
- int start_col = first_elt_read_by_thread;
- static constexpr int COLS_PER_GROUP_LDG = ELTS_PER_LDG * THREADS_PER_ROW;
- for (int k_idx = 0; k_idx < k; ++k_idx) {
- // First, each thread does the local argmax
- float max_val = row_chunk[0];
- int expert = start_col;
- #pragma unroll
- for (int ldg = 0, col = start_col; ldg < LDG_PER_THREAD;
- ++ldg, col += COLS_PER_GROUP_LDG) {
- #pragma unroll
- for (int ii = 0; ii < ELTS_PER_LDG; ++ii) {
- float val = row_chunk[ldg * ELTS_PER_LDG + ii];
- // No check on the experts here since columns with the smallest index
- // are processed first and only updated if > (not >=)
- if (val > max_val) {
- max_val = val;
- expert = col + ii;
- }
- }
- }
- // Now, we perform the argmax reduce. We use the butterfly pattern so threads
- // reach consensus about the max. This will be useful for K > 1 so that the
- // threads can agree on "who" had the max value. That thread can then blank out
- // their max with -inf and the warp can run more iterations...
- #pragma unroll
- for (int mask = THREADS_PER_ROW / 2; mask > 0; mask /= 2) {
- float other_max =
- APHRODITE_SHFL_XOR_SYNC_WIDTH(max_val, mask, THREADS_PER_ROW);
- int other_expert =
- APHRODITE_SHFL_XOR_SYNC_WIDTH(expert, mask, THREADS_PER_ROW);
- // We want lower indices to "win" in every thread so we break ties this
- // way
- if (other_max > max_val ||
- (other_max == max_val && other_expert < expert)) {
- max_val = other_max;
- expert = other_expert;
- }
- }
- // Write the max for this k iteration to global memory.
- if (thread_group_idx == 0) {
- // Add a guard to ignore experts not included by this node
- const bool node_uses_expert =
- expert >= start_expert && expert < end_expert;
- const bool should_process_row = row_is_active && node_uses_expert;
- // The lead thread from each sub-group will write out the final results to
- // global memory. (This will be a single) thread per row of the
- // input/output matrices.
- const int idx = k * thread_row + k_idx;
- output[idx] = max_val;
- indices[idx] = should_process_row ? (expert - start_expert) : NUM_EXPERTS;
- source_rows[idx] = k_idx * num_rows + thread_row;
- }
- // Finally, we clear the value in the thread with the current max if there
- // is another iteration to run.
- if (k_idx + 1 < k) {
- const int ldg_group_for_expert = expert / COLS_PER_GROUP_LDG;
- const int thread_to_clear_in_group =
- (expert / ELTS_PER_LDG) % THREADS_PER_ROW;
- // Only the thread in the group which produced the max will reset the
- // "winning" value to -inf.
- if (thread_group_idx == thread_to_clear_in_group) {
- const int offset_for_expert = expert % ELTS_PER_LDG;
- // Safe to set to any negative value since row_chunk values must be
- // between 0 and 1.
- row_chunk[ldg_group_for_expert * ELTS_PER_LDG + offset_for_expert] =
- -10000.f;
- }
- }
- }
- }
- namespace detail {
- // Constructs some constants needed to partition the work across threads at
- // compile time.
- template <int EXPERTS, int BYTES_PER_LDG>
- struct TopkConstants {
- static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(float);
- static_assert(EXPERTS / (ELTS_PER_LDG * WARP_SIZE) == 0 ||
- EXPERTS % (ELTS_PER_LDG * WARP_SIZE) == 0,
- "");
- static constexpr int VECs_PER_THREAD =
- MAX(1, EXPERTS / (ELTS_PER_LDG * WARP_SIZE));
- static constexpr int VPT = VECs_PER_THREAD * ELTS_PER_LDG;
- static constexpr int THREADS_PER_ROW = EXPERTS / VPT;
- static constexpr int ROWS_PER_WARP = WARP_SIZE / THREADS_PER_ROW;
- };
- } // namespace detail
- template <int EXPERTS, int WARPS_PER_TB>
- void topkGatingSoftmaxLauncherHelper(const float* input, const bool* finished,
- float* output, int* indices,
- int* source_row, const int num_rows,
- const int k, const int start_expert,
- const int end_expert,
- cudaStream_t stream) {
- static constexpr std::size_t MAX_BYTES_PER_LDG = 16;
- static constexpr int BYTES_PER_LDG =
- MIN(MAX_BYTES_PER_LDG, sizeof(float) * EXPERTS);
- using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG>;
- static constexpr int VPT = Constants::VPT;
- static constexpr int ROWS_PER_WARP = Constants::ROWS_PER_WARP;
- const int num_warps = (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
- const int num_blocks = (num_warps + WARPS_PER_TB - 1) / WARPS_PER_TB;
- dim3 block_dim(WARP_SIZE, WARPS_PER_TB);
- topkGatingSoftmax<VPT, EXPERTS, WARPS_PER_TB, BYTES_PER_LDG>
- <<<num_blocks, block_dim, 0, stream>>>(input, finished, output, num_rows,
- indices, source_row, k,
- start_expert, end_expert);
- }
- #define LAUNCH_SOFTMAX(NUM_EXPERTS, WARPS_PER_TB) \
- topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB>( \
- gating_output, nullptr, topk_weights, topk_indicies, \
- token_expert_indices, num_tokens, topk, 0, num_experts, stream);
- void topkGatingSoftmaxKernelLauncher(
- const float* gating_output, float* topk_weights, int* topk_indicies,
- int* token_expert_indices, float* softmax_workspace, const int num_tokens,
- const int num_experts, const int topk, cudaStream_t stream) {
- static constexpr int WARPS_PER_TB = 4;
- switch (num_experts) {
- case 1:
- LAUNCH_SOFTMAX(1, WARPS_PER_TB);
- break;
- case 2:
- LAUNCH_SOFTMAX(2, WARPS_PER_TB);
- break;
- case 4:
- LAUNCH_SOFTMAX(4, WARPS_PER_TB);
- break;
- case 8:
- LAUNCH_SOFTMAX(8, WARPS_PER_TB);
- break;
- case 16:
- LAUNCH_SOFTMAX(16, WARPS_PER_TB);
- break;
- case 32:
- LAUNCH_SOFTMAX(32, WARPS_PER_TB);
- break;
- case 64:
- LAUNCH_SOFTMAX(64, WARPS_PER_TB);
- break;
- case 128:
- LAUNCH_SOFTMAX(128, WARPS_PER_TB);
- break;
- case 256:
- LAUNCH_SOFTMAX(256, WARPS_PER_TB);
- break;
- default: {
- TORCH_CHECK(softmax_workspace != nullptr,
- "softmax_workspace must be provided for num_experts that are "
- "not a power of 2.");
- static constexpr int TPB = 256;
- moeSoftmax<TPB><<<num_tokens, TPB, 0, stream>>>(
- gating_output, nullptr, softmax_workspace, num_experts);
- moeTopK<TPB><<<num_tokens, TPB, 0, stream>>>(
- softmax_workspace, nullptr, topk_weights, topk_indicies,
- token_expert_indices, num_experts, topk, 0, num_experts);
- }
- }
- }
- } // namespace moe
- } // namespace aphrodite
- void topk_softmax(torch::Tensor& topk_weights, // [num_tokens, topk]
- torch::Tensor& topk_indices, // [num_tokens, topk]
- torch::Tensor& token_expert_indices, // [num_tokens, topk]
- torch::Tensor& gating_output) // [num_tokens, num_experts]
- {
- const int num_experts = gating_output.size(-1);
- const int num_tokens = gating_output.numel() / num_experts;
- const int topk = topk_weights.size(-1);
- const bool is_pow_2 =
- (num_experts != 0) && ((num_experts & (num_experts - 1)) == 0);
- const bool needs_workspace = !is_pow_2 || num_experts > 256;
- const int64_t workspace_size = needs_workspace ? num_tokens * num_experts : 0;
- const at::cuda::OptionalCUDAGuard device_guard(device_of(gating_output));
- const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
- torch::Tensor softmax_workspace =
- torch::empty({workspace_size}, gating_output.options());
- aphrodite::moe::topkGatingSoftmaxKernelLauncher(
- gating_output.data_ptr<float>(), topk_weights.data_ptr<float>(),
- topk_indices.data_ptr<int>(), token_expert_indices.data_ptr<int>(),
- softmax_workspace.data_ptr<float>(), num_tokens, num_experts, topk,
- stream);
- }
|