123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- #include "cache.h"
- #include "ops.h"
- #include "core/registration.h"
- #include <torch/library.h>
- std::string init_cpu_threads_env(const std::string& cpu_ids);
- void int8_scaled_mm(torch::Tensor& c, const torch::Tensor& a,
- const torch::Tensor& b, const torch::Tensor& a_scales,
- const torch::Tensor& b_scales,
- const c10::optional<torch::Tensor>& bias);
- TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
- // Aphrodite custom ops
- // Attention ops
- // Compute the attention between an input query and the cached keys/values
- // using PagedAttention.
- ops.def(
- "paged_attention_v1("
- " Tensor! out, Tensor query, Tensor key_cache,"
- " Tensor value_cache, int num_kv_heads, float scale,"
- " Tensor block_tables, Tensor seq_lens, int block_size,"
- " int max_seq_len, Tensor? alibi_slopes,"
- " str kv_cache_dtype, float k_scale, float v_scale,"
- " int tp_rank, int blocksparse_local_blocks,"
- " int blocksparse_vert_stride, int blocksparse_block_size,"
- " int blocksparse_head_sliding_step) -> ()");
- ops.impl("paged_attention_v1", torch::kCPU, &paged_attention_v1);
- // PagedAttention V2.
- ops.def(
- "paged_attention_v2("
- " Tensor! out, Tensor! exp_sums, Tensor! max_logits,"
- " Tensor! tmp_out, Tensor query, Tensor key_cache,"
- " Tensor value_cache, int num_kv_heads, float scale,"
- " Tensor block_tables, Tensor seq_lens, int block_size,"
- " int max_seq_len, Tensor? alibi_slopes,"
- " str kv_cache_dtype, float k_scale, float v_scale,"
- " int tp_rank, int blocksparse_local_blocks,"
- " int blocksparse_vert_stride, int blocksparse_block_size,"
- " int blocksparse_head_sliding_step) -> ()");
- ops.impl("paged_attention_v2", torch::kCPU, &paged_attention_v2);
- // Activation ops
- // Activation function used in SwiGLU.
- ops.def("silu_and_mul(Tensor! out, Tensor input) -> ()");
- ops.impl("silu_and_mul", torch::kCPU, &silu_and_mul);
- // Activation function used in GeGLU with `none` approximation.
- ops.def("gelu_and_mul(Tensor! out, Tensor input) -> ()");
- ops.impl("gelu_and_mul", torch::kCPU, &gelu_and_mul);
- // Activation function used in GeGLU with `tanh` approximation.
- ops.def("gelu_tanh_and_mul(Tensor! out, Tensor input) -> ()");
- ops.impl("gelu_tanh_and_mul", torch::kCPU, &gelu_tanh_and_mul);
- // GELU implementation used in GPT-2.
- ops.def("gelu_new(Tensor! out, Tensor input) -> ()");
- ops.impl("gelu_new", torch::kCPU, &gelu_new);
- // Approximate GELU implementation.
- ops.def("gelu_fast(Tensor! out, Tensor input) -> ()");
- ops.impl("gelu_fast", torch::kCPU, &gelu_fast);
- // Quick GELU implementation.
- ops.def("gelu_quick(Tensor! out, Tensor input) -> ()");
- ops.impl("gelu_quick", torch::kCPU, &gelu_quick);
- // Layernorm
- // Apply Root Mean Square (RMS) Normalization to the input tensor.
- ops.def(
- "rms_norm(Tensor! out, Tensor input, Tensor weight, float epsilon) -> "
- "()");
- ops.impl("rms_norm", torch::kCPU, &rms_norm);
- // In-place fused Add and RMS Normalization.
- ops.def(
- "fused_add_rms_norm(Tensor! input, Tensor! residual, Tensor weight, "
- "float epsilon) -> ()");
- ops.impl("fused_add_rms_norm", torch::kCPU, &fused_add_rms_norm);
- // Rotary embedding
- // Apply GPT-NeoX or GPT-J style rotary embedding to query and key.
- ops.def(
- "rotary_embedding(Tensor positions, Tensor! query,"
- " Tensor! key, int head_size,"
- " Tensor cos_sin_cache, bool is_neox) -> ()");
- ops.impl("rotary_embedding", torch::kCPU, &rotary_embedding);
- // Quantization
- #ifdef __AVX512F__
- // Compute int8 quantized tensor for given scaling factor.
- ops.def(
- "static_scaled_int8_quant(Tensor! out, Tensor input, Tensor scale,"
- "Tensor? azp) -> ()");
- ops.impl("static_scaled_int8_quant", torch::kCPU, &static_scaled_int8_quant);
- // Compute int8 quantized tensor and scaling factor
- ops.def(
- "dynamic_scaled_int8_quant(Tensor! out, Tensor input, Tensor! scale, "
- "Tensor!? azp) -> ()");
- ops.impl("dynamic_scaled_int8_quant", torch::kCPU,
- &dynamic_scaled_int8_quant);
- // W8A8 GEMM, supporting symmetric per-tensor or per-row/column
- // quantization.
- ops.def(
- "cutlass_scaled_mm(Tensor! out, Tensor a,"
- " Tensor b, Tensor a_scales,"
- " Tensor b_scales, Tensor? bias) -> ()");
- ops.impl("cutlass_scaled_mm", torch::kCPU, &int8_scaled_mm);
- #endif
- }
- TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
- // Cache ops
- // Swap in (out) the cache blocks from src to dst.
- cache_ops.def(
- "swap_blocks(Tensor src, Tensor! dst, Tensor block_mapping) -> ()");
- cache_ops.impl("swap_blocks", torch::kCPU, &swap_blocks);
- // Copy the cache blocks from src to dst.
- cache_ops.def(
- "copy_blocks(Tensor(a!)[] key_caches, Tensor[](b!) value_caches, "
- "Tensor block_mapping) -> ()");
- cache_ops.impl("copy_blocks", torch::kCPU, ©_blocks);
- // Reshape the key and value tensors and cache them.
- cache_ops.def(
- "reshape_and_cache(Tensor key, Tensor value,"
- " Tensor! key_cache, Tensor! value_cache,"
- " Tensor slot_mapping,"
- " str kv_cache_dtype,"
- " float k_scale, float v_scale) -> ()");
- cache_ops.impl("reshape_and_cache", torch::kCPU, &reshape_and_cache);
- }
- TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _utils), utils) {
- // CPU utils
- utils.def("init_cpu_threads_env(str cpu_ids) -> str", &init_cpu_threads_env);
- }
- REGISTER_EXTENSION(TORCH_EXTENSION_NAME)
|