123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 |
- #include "cpu_types.hpp"
- namespace {
- template <typename scalar_t>
- void rotary_embedding_impl(
- const int64_t* __restrict__ positions, // [batch_size, seq_len] or
- // [num_tokens]
- scalar_t* __restrict__ query, /// [batch_size, seq_len, num_heads,
- /// head_size] or [num_tokens, num_heads,
- /// head_size]
- scalar_t* __restrict__ key, // [batch_size, seq_len, num_kv_heads,
- // head_size] or [num_tokens, num_kv_heads,
- // head_size]
- const scalar_t* __restrict__ cos_sin_cache, // [max_position, 2, rot_dim //
- // 2]
- const int rot_dim, const int64_t query_stride, const int64_t key_stride,
- const int num_heads, const int num_kv_heads, const int head_size,
- const int num_tokens) {
- using scalar_vec_t = vec_op::vec_t<scalar_t>;
- constexpr int VEC_ELEM_NUM = scalar_vec_t::get_elem_num();
- const int embed_dim = rot_dim / 2;
- bool flag = (embed_dim % VEC_ELEM_NUM == 0);
- const int loop_upper = flag ? embed_dim : embed_dim - VEC_ELEM_NUM;
- auto compute_loop = [&](const int64_t token_head, const scalar_t* cache_ptr,
- scalar_t* qk) {
- int j = 0;
- for (; j < loop_upper; j += VEC_ELEM_NUM) {
- const int rot_offset = j;
- const int x_index = rot_offset;
- const int y_index = embed_dim + rot_offset;
- const int64_t out_x = token_head + x_index;
- const int64_t out_y = token_head + y_index;
- const scalar_vec_t cos(cache_ptr + x_index);
- const scalar_vec_t sin(cache_ptr + y_index);
- const scalar_vec_t q_x(qk + out_x);
- const scalar_vec_t q_y(qk + out_y);
- vec_op::FP32Vec8 fp32_cos(cos);
- vec_op::FP32Vec8 fp32_sin(sin);
- vec_op::FP32Vec8 fp32_q_x(q_x);
- vec_op::FP32Vec8 fp32_q_y(q_y);
- auto out1 = fp32_q_x * fp32_cos - fp32_q_y * fp32_sin;
- scalar_vec_t(out1).save(qk + out_x);
- auto out2 = fp32_q_y * fp32_cos + fp32_q_x * fp32_sin;
- scalar_vec_t(out2).save(qk + out_y);
- }
- if (!flag) {
- for (; j < embed_dim; ++j) {
- const int x_index = j;
- const int y_index = embed_dim + j;
- const int64_t out_x = token_head + x_index;
- const int64_t out_y = token_head + y_index;
- const float fp32_cos = cache_ptr[x_index];
- const float fp32_sin = cache_ptr[y_index];
- const float fp32_q_x = qk[out_x];
- const float fp32_q_y = qk[out_y];
- qk[out_x] = fp32_q_x * fp32_cos - fp32_q_y * fp32_sin;
- qk[out_y] = fp32_q_y * fp32_cos + fp32_q_x * fp32_sin;
- }
- }
- };
- #pragma omp parallel for
- for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
- int64_t pos = positions[token_idx];
- const scalar_t* cache_ptr = cos_sin_cache + pos * rot_dim;
- for (int i = 0; i < num_heads; ++i) {
- const int head_idx = i;
- const int64_t token_head =
- token_idx * query_stride + head_idx * head_size;
- compute_loop(token_head, cache_ptr, query);
- }
- for (int i = 0; i < num_kv_heads; ++i) {
- const int head_idx = i;
- const int64_t token_head = token_idx * key_stride + head_idx * head_size;
- compute_loop(token_head, cache_ptr, key);
- }
- }
- }
- template <typename scalar_t>
- void rotary_embedding_gptj_impl(
- const int64_t* __restrict__ positions, // [batch_size, seq_len] or
- // [num_tokens]
- scalar_t* __restrict__ query, /// [batch_size, seq_len, num_heads,
- /// head_size] or [num_tokens, num_heads,
- /// head_size]
- scalar_t* __restrict__ key, // [batch_size, seq_len, num_kv_heads,
- // head_size] or [num_tokens, num_kv_heads,
- // head_size]
- const scalar_t* __restrict__ cos_sin_cache, // [max_position, 2, rot_dim //
- // 2]
- const int rot_dim, const int64_t query_stride, const int64_t key_stride,
- const int num_heads, const int num_kv_heads, const int head_size,
- const int num_tokens) {
- const int embed_dim = rot_dim / 2;
- #pragma omp parallel for collapse(2)
- for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
- for (int i = 0; i < num_heads; ++i) {
- int64_t pos = positions[token_idx];
- const scalar_t* cache_ptr = cos_sin_cache + pos * rot_dim;
- const scalar_t* cos_cache_ptr = cache_ptr;
- const scalar_t* sin_cache_ptr = cache_ptr + embed_dim;
- const int head_idx = i;
- const int64_t token_head =
- token_idx * query_stride + head_idx * head_size;
- scalar_t* head_query = token_head + query;
- for (int j = 0; j < embed_dim; j += 1) {
- const int rot_offset = j;
- const int x_index = 2 * rot_offset;
- const int y_index = 2 * rot_offset + 1;
- const float cos = cos_cache_ptr[rot_offset];
- const float sin = sin_cache_ptr[rot_offset];
- const float x = head_query[x_index];
- const float y = head_query[y_index];
- head_query[x_index] = x * cos - y * sin;
- head_query[y_index] = y * cos + x * sin;
- }
- }
- }
- #pragma omp parallel for collapse(2)
- for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
- for (int i = 0; i < num_kv_heads; ++i) {
- int64_t pos = positions[token_idx];
- const scalar_t* cache_ptr = cos_sin_cache + pos * rot_dim;
- const scalar_t* cos_cache_ptr = cache_ptr;
- const scalar_t* sin_cache_ptr = cache_ptr + embed_dim;
- const int head_idx = i;
- const int64_t token_head = token_idx * key_stride + head_idx * head_size;
- scalar_t* head_key = key + token_head;
- for (int j = 0; j < embed_dim; j += 1) {
- const int rot_offset = j;
- const int x_index = 2 * rot_offset;
- const int y_index = 2 * rot_offset + 1;
- const float cos = cos_cache_ptr[rot_offset];
- const float sin = sin_cache_ptr[rot_offset];
- const float x = head_key[x_index];
- const float y = head_key[y_index];
- head_key[x_index] = x * cos - y * sin;
- head_key[y_index] = y * cos + x * sin;
- }
- }
- }
- }
- }; // namespace
- void rotary_embedding(torch::Tensor& positions, torch::Tensor& query,
- torch::Tensor& key, int64_t head_size,
- torch::Tensor& cos_sin_cache, bool is_neox) {
- int num_tokens = query.numel() / query.size(-1);
- int rot_dim = cos_sin_cache.size(1);
- int num_heads = query.size(-1) / head_size;
- int num_kv_heads = key.size(-1) / head_size;
- int64_t key_stride = key.stride(-2);
- int64_t query_stride = query.stride(-2);
- APHRODITE_DISPATCH_FLOATING_TYPES(
- query.scalar_type(), "rotary_embedding_impl", [&] {
- CPU_KERNEL_GUARD_IN(rotary_embedding_impl)
- if (is_neox) {
- rotary_embedding_impl(
- positions.data_ptr<int64_t>(), query.data_ptr<scalar_t>(),
- key.data_ptr<scalar_t>(), cos_sin_cache.data_ptr<scalar_t>(),
- rot_dim, query_stride, key_stride, num_heads, num_kv_heads,
- head_size, num_tokens);
- } else {
- rotary_embedding_gptj_impl(
- positions.data_ptr<int64_t>(), query.data_ptr<scalar_t>(),
- key.data_ptr<scalar_t>(), cos_sin_cache.data_ptr<scalar_t>(),
- rot_dim, query_stride, key_stride, num_heads, num_kv_heads,
- head_size, num_tokens);
- }
- CPU_KERNEL_GUARD_OUT(rotary_embedding_impl)
- });
- }
|