123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983 |
- /*
- * Adapted from
- * https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp
- * Copyright (c) 2023, The PygmalionAI team.
- * Copyright (c) 2023, The vLLM team.
- * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #ifdef USE_ROCM
- #include <hip/hip_runtime.h>
- #endif
- #include <torch/extension.h>
- #include <ATen/cuda/CUDAContext.h>
- #include <c10/cuda/CUDAGuard.h>
- #include "attention_dtypes.h"
- #include "attention_utils.cuh"
- #include "../quantization/int8_kvcache/quant_utils.cuh"
- #ifdef ENABLE_FP8_E5M2
- #include "../quantization/fp8_e5m2_kvcache/quant_utils.cuh"
- #endif
- #include <algorithm>
- #ifndef USE_ROCM
- #define WARP_SIZE 32
- #else
- #define WARP_SIZE warpSize
- #endif
- #define MAX(a, b) ((a) > (b) ? (a) : (b))
- #define MIN(a, b) ((a) < (b) ? (a) : (b))
- #define DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b))
- enum kv_cache_dtype {
- AUTO,
- #ifdef ENABLE_FP8_E5M2
- FP8_E5M2,
- #endif
- INT8
- };
- namespace aphrodite {
- // Utility function for attention softmax.
- template <int NUM_WARPS>
- inline __device__ float block_sum(float* red_smem, float sum) {
- // Decompose the thread index into warp / lane.
- int warp = threadIdx.x / WARP_SIZE;
- int lane = threadIdx.x % WARP_SIZE;
- // Compute the sum per warp.
- #pragma unroll
- for (int mask = WARP_SIZE / 2; mask >= 1; mask /= 2) {
- sum += APHRODITE_SHFL_XOR_SYNC(sum, mask);
- }
- // Warp leaders store the data to shared memory.
- if (lane == 0) {
- red_smem[warp] = sum;
- }
- // Make sure the data is in shared memory.
- __syncthreads();
- // The warps compute the final sums.
- if (lane < NUM_WARPS) {
- sum = red_smem[lane];
- }
- // Parallel reduction inside the warp.
- #pragma unroll
- for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
- sum += APHRODITE_SHFL_XOR_SYNC(sum, mask);
- }
- // Broadcast to other threads.
- return APHRODITE_SHFL_SYNC(sum, 0);
- }
- // TODO: Merge the last two dimensions of the grid.
- // Grid: (num_heads, num_seqs, max_num_partitions).
- template <typename scalar_t, typename cache_t, int HEAD_SIZE, int BLOCK_SIZE,
- int NUM_THREADS, kv_cache_dtype KV_CACHE_DTYPE,
- int PARTITION_SIZE = 0> // Zero means no partitioning.
- __device__ void paged_attention_kernel(
- float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
- float* __restrict__ max_logits, // [num_seqs, num_heads,
- // max_num_partitions]
- scalar_t* __restrict__ out, // [num_seqs, num_heads, max_num_partitions,
- // head_size]
- const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
- const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads,
- // head_size/x, block_size, x]
- const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads,
- // head_size, block_size]
- const int num_kv_heads, // [num_heads]
- const float scale,
- const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
- const int* __restrict__ context_lens, // [num_seqs]
- const int max_num_blocks_per_seq,
- const float* __restrict__ alibi_slopes, // [num_heads]
- const int q_stride, const int kv_block_stride, const int kv_head_stride,
- const float k_scale = 1.0f, const float k_zp = 0.0f,
- const float v_scale = 1.0f, const float v_zp = 0.0f) {
- const int seq_idx = blockIdx.y;
- const int partition_idx = blockIdx.z;
- const int max_num_partitions = gridDim.z;
- constexpr bool USE_PARTITIONING = PARTITION_SIZE > 0;
- const int context_len = context_lens[seq_idx];
- if (USE_PARTITIONING && partition_idx * PARTITION_SIZE >= context_len) {
- // No work to do. Terminate the thread block.
- return;
- }
- const int num_context_blocks = DIVIDE_ROUND_UP(context_len, BLOCK_SIZE);
- const int num_blocks_per_partition =
- USE_PARTITIONING ? PARTITION_SIZE / BLOCK_SIZE : num_context_blocks;
- // [start_block_idx, end_block_idx) is the range of blocks to process.
- const int start_block_idx =
- USE_PARTITIONING ? partition_idx * num_blocks_per_partition : 0;
- const int end_block_idx =
- MIN(start_block_idx + num_blocks_per_partition, num_context_blocks);
- const int num_blocks = end_block_idx - start_block_idx;
- // [start_token_idx, end_token_idx) is the range of tokens to process.
- const int start_token_idx = start_block_idx * BLOCK_SIZE;
- const int end_token_idx =
- MIN(start_token_idx + num_blocks * BLOCK_SIZE, context_len);
- const int num_tokens = end_token_idx - start_token_idx;
- constexpr int THREAD_GROUP_SIZE = MAX(WARP_SIZE / BLOCK_SIZE, 1);
- constexpr int NUM_THREAD_GROUPS =
- NUM_THREADS / THREAD_GROUP_SIZE; // Note: This assumes THREAD_GROUP_SIZE
- // divides NUM_THREADS
- assert(NUM_THREADS % THREAD_GROUP_SIZE == 0);
- constexpr int NUM_TOKENS_PER_THREAD_GROUP =
- DIVIDE_ROUND_UP(BLOCK_SIZE, WARP_SIZE);
- constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
- const int thread_idx = threadIdx.x;
- const int warp_idx = thread_idx / WARP_SIZE;
- const int lane = thread_idx % WARP_SIZE;
- const int head_idx = blockIdx.x;
- const int num_heads = gridDim.x;
- const int num_queries_per_kv = num_heads / num_kv_heads;
- const int kv_head_idx = head_idx / num_queries_per_kv;
- const float alibi_slope =
- alibi_slopes == nullptr ? 0.f : alibi_slopes[head_idx];
- // A vector type to store a part of a key or a query.
- // The vector size is configured in such a way that the threads in a thread
- // group fetch or compute 16 bytes at a time. For example, if the size of a
- // thread group is 4 and the data type is half, then the vector size is 16 /
- // (4 * sizeof(half)) == 2.
- constexpr int VEC_SIZE = MAX(16 / (THREAD_GROUP_SIZE * sizeof(scalar_t)), 1);
- using K_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
- using Q_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
- using Quant_vec = typename Vec<cache_t, VEC_SIZE>::Type;
- constexpr int NUM_ELEMS_PER_THREAD = HEAD_SIZE / THREAD_GROUP_SIZE;
- constexpr int NUM_VECS_PER_THREAD = NUM_ELEMS_PER_THREAD / VEC_SIZE;
- const int thread_group_idx = thread_idx / THREAD_GROUP_SIZE;
- const int thread_group_offset = thread_idx % THREAD_GROUP_SIZE;
- // Load the query to registers.
- // Each thread in a thread group has a different part of the query.
- // For example, if the the thread group size is 4, then the first thread in
- // the group has 0, 4, 8, ... th vectors of the query, and the second thread
- // has 1, 5, 9, ... th vectors of the query, and so on. NOTE: Because q is
- // split from a qkv tensor, it may not be contiguous.
- const scalar_t* q_ptr = q + seq_idx * q_stride + head_idx * HEAD_SIZE;
- __shared__ Q_vec q_vecs[THREAD_GROUP_SIZE][NUM_VECS_PER_THREAD];
- #pragma unroll
- for (int i = thread_group_idx; i < NUM_VECS_PER_THREAD;
- i += NUM_THREAD_GROUPS) {
- const int vec_idx = thread_group_offset + i * THREAD_GROUP_SIZE;
- q_vecs[thread_group_offset][i] =
- *reinterpret_cast<const Q_vec*>(q_ptr + vec_idx * VEC_SIZE);
- }
- __syncthreads(); // TODO: possible speedup if this is replaced with a memory
- // wall right before we use q_vecs
- // Memory planning.
- extern __shared__ char shared_mem[];
- // NOTE: We use FP32 for the softmax logits for better accuracy.
- float* logits = reinterpret_cast<float*>(shared_mem);
- // Workspace for reduction.
- __shared__ float red_smem[2 * NUM_WARPS];
- // x == THREAD_GROUP_SIZE * VEC_SIZE
- // Each thread group fetches x elements from the key at a time.
- constexpr int x = 16 / sizeof(cache_t);
- float qk_max = -FLT_MAX;
- // Iterate over the key blocks.
- // Each warp fetches a block of keys for each iteration.
- // Each thread group in a warp fetches a key from the block, and computes
- // dot product with the query.
- const int* block_table = block_tables + seq_idx * max_num_blocks_per_seq;
- for (int block_idx = start_block_idx + warp_idx; block_idx < end_block_idx;
- block_idx += NUM_WARPS) {
- // NOTE: The block number is stored in int32. However, we cast it to int64
- // because int32 can lead to overflow when this variable is multiplied by
- // large numbers (e.g., kv_block_stride).
- const int64_t physical_block_number =
- static_cast<int64_t>(block_table[block_idx]);
- // Load a key to registers.
- // Each thread in a thread group has a different part of the key.
- // For example, if the the thread group size is 4, then the first thread in
- // the group has 0, 4, 8, ... th vectors of the key, and the second thread
- // has 1, 5, 9, ... th vectors of the key, and so on.
- for (int i = 0; i < NUM_TOKENS_PER_THREAD_GROUP; i++) {
- const int physical_block_offset =
- (thread_group_idx + i * WARP_SIZE) % BLOCK_SIZE;
- const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
- K_vec k_vecs[NUM_VECS_PER_THREAD];
- #pragma unroll
- for (int j = 0; j < NUM_VECS_PER_THREAD; j++) {
- const cache_t* k_ptr =
- k_cache + physical_block_number * kv_block_stride +
- kv_head_idx * kv_head_stride + physical_block_offset * x;
- const int vec_idx = thread_group_offset + j * THREAD_GROUP_SIZE;
- const int offset1 = (vec_idx * VEC_SIZE) / x;
- const int offset2 = (vec_idx * VEC_SIZE) % x;
- if constexpr (KV_CACHE_DTYPE == INT8) {
- Quant_vec k_vec_quant = *reinterpret_cast<const Quant_vec*>(
- k_ptr + offset1 * BLOCK_SIZE * x + offset2);
- using Dequant_vec = typename FloatVec<Quant_vec>::Type;
- Dequant_vec k_vec_dequant = int8::dequant(k_vec_quant, k_scale, k_zp);
- k_vecs[j] = int8::vec_conversion<K_vec, Dequant_vec>(k_vec_dequant);
- #ifdef ENABLE_FP8_E5M2
- } else if constexpr (KV_CACHE_DTYPE == FP8_E5M2) {
- Quant_vec k_vec_quant = *reinterpret_cast<const Quant_vec*>(
- k_ptr + offset1 * BLOCK_SIZE * x + offset2);
- // Vector conversion from Quant_vec to K_vec.
- k_vecs[j] =
- fp8_e5m2_unscaled::vec_conversion<K_vec, Quant_vec>(k_vec_quant);
- #endif
- } else {
- k_vecs[j] = *reinterpret_cast<const K_vec*>(
- k_ptr + offset1 * BLOCK_SIZE * x + offset2);
- }
- }
- // Compute dot product.
- // This includes a reduction across the threads in the same thread group.
- float qk = scale * Qk_dot<scalar_t, THREAD_GROUP_SIZE>::dot(
- q_vecs[thread_group_offset], k_vecs);
- // Add the ALiBi bias if slopes are given.
- qk +=
- (alibi_slope != 0) ? alibi_slope * (token_idx - context_len + 1) : 0;
- if (thread_group_offset == 0) {
- // Store the partial reductions to shared memory.
- // NOTE: It is required to zero out the masked logits.
- const bool mask = token_idx >= context_len;
- logits[token_idx - start_token_idx] = mask ? 0.f : qk;
- // Update the max value.
- qk_max = mask ? qk_max : fmaxf(qk_max, qk);
- }
- }
- }
- // Perform reduction across the threads in the same warp to get the
- // max qk value for each "warp" (not across the thread block yet).
- // The 0-th thread of each thread group already has its max qk value.
- #pragma unroll
- for (int mask = WARP_SIZE / 2; mask >= THREAD_GROUP_SIZE; mask /= 2) {
- qk_max = fmaxf(qk_max, APHRODITE_SHFL_XOR_SYNC(qk_max, mask));
- }
- if (lane == 0) {
- red_smem[warp_idx] = qk_max;
- }
- __syncthreads();
- // TODO: Refactor this part.
- // Get the max qk value for the sequence.
- qk_max = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
- #pragma unroll
- for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
- qk_max = fmaxf(qk_max, APHRODITE_SHFL_XOR_SYNC(qk_max, mask));
- }
- // Broadcast the max qk value to all threads.
- qk_max = APHRODITE_SHFL_SYNC(qk_max, 0);
- // Get the sum of the exp values.
- float exp_sum = 0.f;
- for (int i = thread_idx; i < num_tokens; i += NUM_THREADS) {
- float val = __expf(logits[i] - qk_max);
- logits[i] = val;
- exp_sum += val;
- }
- exp_sum = block_sum<NUM_WARPS>(&red_smem[NUM_WARPS], exp_sum);
- // Compute softmax.
- const float inv_sum = __fdividef(1.f, exp_sum + 1e-6f);
- for (int i = thread_idx; i < num_tokens; i += NUM_THREADS) {
- logits[i] *= inv_sum;
- }
- __syncthreads();
- // If partitioning is enabled, store the max logit and exp_sum.
- if (USE_PARTITIONING && thread_idx == 0) {
- float* max_logits_ptr = max_logits +
- seq_idx * num_heads * max_num_partitions +
- head_idx * max_num_partitions + partition_idx;
- *max_logits_ptr = qk_max;
- float* exp_sums_ptr = exp_sums + seq_idx * num_heads * max_num_partitions +
- head_idx * max_num_partitions + partition_idx;
- *exp_sums_ptr = exp_sum;
- }
- // Each thread will fetch 16 bytes from the value cache at a time.
- constexpr int V_VEC_SIZE = MIN(16 / sizeof(scalar_t), BLOCK_SIZE);
- using V_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
- using L_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
- using V_quant_vec = typename Vec<cache_t, V_VEC_SIZE>::Type;
- using Float_L_vec = typename FloatVec<L_vec>::Type;
- constexpr int NUM_V_VECS_PER_ROW = BLOCK_SIZE / V_VEC_SIZE;
- constexpr int NUM_ROWS_PER_ITER = WARP_SIZE / NUM_V_VECS_PER_ROW;
- constexpr int NUM_ROWS_PER_THREAD =
- DIVIDE_ROUND_UP(HEAD_SIZE, NUM_ROWS_PER_ITER);
- // NOTE: We use FP32 for the accumulator for better accuracy.
- float accs[NUM_ROWS_PER_THREAD];
- #pragma unroll
- for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
- accs[i] = 0.f;
- }
- scalar_t zero_value;
- zero(zero_value);
- for (int block_idx = start_block_idx + warp_idx; block_idx < end_block_idx;
- block_idx += NUM_WARPS) {
- // NOTE: The block number is stored in int32. However, we cast it to int64
- // because int32 can lead to overflow when this variable is multiplied by
- // large numbers (e.g., kv_block_stride).
- const int64_t physical_block_number =
- static_cast<int64_t>(block_table[block_idx]);
- const int physical_block_offset = (lane % NUM_V_VECS_PER_ROW) * V_VEC_SIZE;
- const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
- L_vec logits_vec;
- from_float(logits_vec, *reinterpret_cast<Float_L_vec*>(logits + token_idx -
- start_token_idx));
- const cache_t* v_ptr = v_cache + physical_block_number * kv_block_stride +
- kv_head_idx * kv_head_stride;
- #pragma unroll
- for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
- const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
- if (row_idx < HEAD_SIZE) {
- const int offset = row_idx * BLOCK_SIZE + physical_block_offset;
- V_vec v_vec;
- if constexpr (KV_CACHE_DTYPE == INT8) {
- // dequant and conversion
- V_quant_vec v_vec_quant =
- *reinterpret_cast<const V_quant_vec*>(v_ptr + offset);
- using V_dequant_vec = typename FloatVec<V_quant_vec>::Type;
- V_dequant_vec v_vec_dequant =
- int8::dequant(v_vec_quant, v_scale, v_zp);
- v_vec = int8::vec_conversion<V_vec, V_dequant_vec>(v_vec_dequant);
- #ifdef ENABLE_FP8_E5M2
- } else if constexpr (KV_CACHE_DTYPE == FP8_E5M2) {
- V_quant_vec v_quant_vec =
- *reinterpret_cast<const V_quant_vec*>(v_ptr + offset);
- // Vector conversion from V_quant_vec to V_vec.
- v_vec = fp8_e5m2_unscaled::vec_conversion<V_vec, V_quant_vec>(
- v_quant_vec);
- #endif
- } else {
- v_vec = *reinterpret_cast<const V_vec*>(v_ptr + offset);
- }
- if (block_idx == num_context_blocks - 1) {
- // NOTE: When v_vec contains the tokens that are out of the context,
- // we should explicitly zero out the values since they may contain
- // NaNs.
- scalar_t* v_vec_ptr = reinterpret_cast<scalar_t*>(&v_vec);
- #pragma unroll
- for (int j = 0; j < V_VEC_SIZE; j++) {
- v_vec_ptr[j] =
- token_idx + j < context_len ? v_vec_ptr[j] : zero_value;
- }
- }
- accs[i] += dot(logits_vec, v_vec);
- }
- }
- }
- // Perform reduction within each warp.
- #pragma unroll
- for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
- float acc = accs[i];
- #pragma unroll
- for (int mask = NUM_V_VECS_PER_ROW / 2; mask >= 1; mask /= 2) {
- acc += APHRODITE_SHFL_XOR_SYNC(acc, mask);
- }
- accs[i] = acc;
- }
- // NOTE: A barrier is required because the shared memory space for logits
- // is reused for the output.
- __syncthreads();
- // Perform reduction across warps.
- float* out_smem = reinterpret_cast<float*>(shared_mem);
- #pragma unroll
- for (int i = NUM_WARPS; i > 1; i /= 2) {
- int mid = i / 2;
- // Upper warps write to shared memory.
- if (warp_idx >= mid && warp_idx < i) {
- float* dst = &out_smem[(warp_idx - mid) * HEAD_SIZE];
- #pragma unroll
- for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
- const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
- if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
- dst[row_idx] = accs[i];
- }
- }
- }
- __syncthreads();
- // Lower warps update the output.
- if (warp_idx < mid) {
- const float* src = &out_smem[warp_idx * HEAD_SIZE];
- #pragma unroll
- for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
- const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
- if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
- accs[i] += src[row_idx];
- }
- }
- }
- __syncthreads();
- }
- // Write the final output.
- if (warp_idx == 0) {
- scalar_t* out_ptr =
- out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
- head_idx * max_num_partitions * HEAD_SIZE + partition_idx * HEAD_SIZE;
- #pragma unroll
- for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
- const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
- if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
- from_float(*(out_ptr + row_idx), accs[i]);
- }
- }
- }
- }
- // Grid: (num_heads, num_seqs, 1).
- template <typename scalar_t, typename cache_t, int HEAD_SIZE, int BLOCK_SIZE,
- int NUM_THREADS,
- kv_cache_dtype KV_CACHE_DTYPE>
- __global__ void paged_attention_v1_kernel(
- scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
- const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
- const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads,
- // head_size/x, block_size, x]
- const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads,
- // head_size, block_size]
- const int num_kv_heads, // [num_heads]
- const float scale,
- const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
- const int* __restrict__ context_lens, // [num_seqs]
- const int max_num_blocks_per_seq,
- const float* __restrict__ alibi_slopes, // [num_heads]
- const int q_stride, const int kv_block_stride, const int kv_head_stride,
- const float k_scale, const float k_zp, const float v_scale,
- const float v_zp) {
- paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS,
- KV_CACHE_DTYPE>(
- /* exp_sums */ nullptr, /* max_logits */ nullptr, out, q, k_cache,
- v_cache, num_kv_heads, scale, block_tables, context_lens,
- max_num_blocks_per_seq, alibi_slopes, q_stride, kv_block_stride,
- kv_head_stride, k_scale, k_zp, v_scale, v_zp);
- }
- // Grid: (num_heads, num_seqs, max_num_partitions).
- template <typename scalar_t, typename cache_t, int HEAD_SIZE, int BLOCK_SIZE,
- int NUM_THREADS, kv_cache_dtype KV_CACHE_DTYPE,
- int PARTITION_SIZE>
- __global__ void paged_attention_v2_kernel(
- float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
- float* __restrict__ max_logits, // [num_seqs, num_heads,
- // max_num_partitions]
- scalar_t* __restrict__ tmp_out, // [num_seqs, num_heads,
- // max_num_partitions, head_size]
- const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
- const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads,
- // head_size/x, block_size, x]
- const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads,
- // head_size, block_size]
- const int num_kv_heads, // [num_heads]
- const float scale,
- const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
- const int* __restrict__ context_lens, // [num_seqs]
- const int max_num_blocks_per_seq,
- const float* __restrict__ alibi_slopes, // [num_heads]
- const int q_stride, const int kv_block_stride, const int kv_head_stride,
- const float k_scale, const float k_zp, const float v_scale,
- const float v_zp) {
- paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS,
- KV_CACHE_DTYPE, PARTITION_SIZE>(
- exp_sums, max_logits, tmp_out, q, k_cache, v_cache, num_kv_heads, scale,
- block_tables, context_lens, max_num_blocks_per_seq, alibi_slopes,
- q_stride, kv_block_stride, kv_head_stride, k_scale, k_zp, v_scale, v_zp);
- }
- // Grid: (num_heads, num_seqs).
- template <typename scalar_t, int HEAD_SIZE, int NUM_THREADS,
- int PARTITION_SIZE>
- __global__ void paged_attention_v2_reduce_kernel(
- scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
- const float* __restrict__ exp_sums, // [num_seqs, num_heads,
- // max_num_partitions]
- const float* __restrict__ max_logits, // [num_seqs, num_heads,
- // max_num_partitions]
- const scalar_t* __restrict__ tmp_out, // [num_seqs, num_heads,
- // max_num_partitions, head_size]
- const int* __restrict__ context_lens, // [num_seqs]
- const int max_num_partitions) {
- const int num_heads = gridDim.x;
- const int head_idx = blockIdx.x;
- const int seq_idx = blockIdx.y;
- const int context_len = context_lens[seq_idx];
- const int num_partitions = DIVIDE_ROUND_UP(context_len, PARTITION_SIZE);
- if (num_partitions == 1) {
- // No need to reduce. Only copy tmp_out to out.
- scalar_t* out_ptr =
- out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
- const scalar_t* tmp_out_ptr =
- tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
- head_idx * max_num_partitions * HEAD_SIZE;
- for (int i = threadIdx.x; i < HEAD_SIZE; i += blockDim.x) {
- out_ptr[i] = tmp_out_ptr[i];
- }
- // Terminate the thread block.
- return;
- }
- constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
- const int warp_idx = threadIdx.x / WARP_SIZE;
- const int lane = threadIdx.x % WARP_SIZE;
- // Size: 2 * num_partitions.
- extern __shared__ char shared_mem[];
- // Workspace for reduction.
- __shared__ float red_smem[2 * NUM_WARPS];
- // Load max logits to shared memory.
- float* shared_max_logits = reinterpret_cast<float*>(shared_mem);
- const float* max_logits_ptr = max_logits +
- seq_idx * num_heads * max_num_partitions +
- head_idx * max_num_partitions;
- float max_logit = -FLT_MAX;
- for (int i = threadIdx.x; i < num_partitions; i += blockDim.x) {
- const float l = max_logits_ptr[i];
- shared_max_logits[i] = l;
- max_logit = fmaxf(max_logit, l);
- }
- __syncthreads();
- // Get the global max logit.
- // Reduce within the warp.
- #pragma unroll
- for (int mask = WARP_SIZE / 2; mask >= 1; mask /= 2) {
- max_logit = fmaxf(max_logit, APHRODITE_SHFL_XOR_SYNC(max_logit, mask));
- }
- if (lane == 0) {
- red_smem[warp_idx] = max_logit;
- }
- __syncthreads();
- // Reduce across warps.
- max_logit = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
- #pragma unroll
- for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
- max_logit = fmaxf(max_logit, APHRODITE_SHFL_XOR_SYNC(max_logit, mask));
- }
- // Broadcast the max value to all threads.
- max_logit = APHRODITE_SHFL_SYNC(max_logit, 0);
- // Load rescaled exp sums to shared memory.
- float* shared_exp_sums =
- reinterpret_cast<float*>(shared_mem + sizeof(float) * num_partitions);
- const float* exp_sums_ptr = exp_sums +
- seq_idx * num_heads * max_num_partitions +
- head_idx * max_num_partitions;
- float global_exp_sum = 0.0f;
- for (int i = threadIdx.x; i < num_partitions; i += blockDim.x) {
- float l = shared_max_logits[i];
- float rescaled_exp_sum = exp_sums_ptr[i] * expf(l - max_logit);
- global_exp_sum += rescaled_exp_sum;
- shared_exp_sums[i] = rescaled_exp_sum;
- }
- __syncthreads();
- global_exp_sum = block_sum<NUM_WARPS>(&red_smem[NUM_WARPS], global_exp_sum);
- const float inv_global_exp_sum = __fdividef(1.0f, global_exp_sum + 1e-6f);
- // Aggregate tmp_out to out.
- const scalar_t* tmp_out_ptr =
- tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
- head_idx * max_num_partitions * HEAD_SIZE;
- scalar_t* out_ptr =
- out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
- #pragma unroll
- for (int i = threadIdx.x; i < HEAD_SIZE; i += NUM_THREADS) {
- float acc = 0.0f;
- for (int j = 0; j < num_partitions; ++j) {
- acc += to_float(tmp_out_ptr[j * HEAD_SIZE + i]) * shared_exp_sums[j] *
- inv_global_exp_sum;
- }
- from_float(out_ptr[i], acc);
- }
- }
- } // namespace aphrodite
- #define LAUNCH_PAGED_ATTENTION_V1(HEAD_SIZE) \
- APHRODITE_DevFuncAttribute_SET_MaxDynamicSharedMemorySize( \
- ((void*)aphrodite::paged_attention_v1_kernel< \
- T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, KV_CACHE_DTYPE>), \
- shared_mem_size); \
- aphrodite::paged_attention_v1_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, \
- NUM_THREADS, KV_CACHE_DTYPE> \
- <<<grid, block, shared_mem_size, stream>>>( \
- out_ptr, query_ptr, key_cache_ptr, value_cache_ptr, num_kv_heads, \
- scale, block_tables_ptr, context_lens_ptr, max_num_blocks_per_seq, \
- alibi_slopes_ptr, q_stride, kv_block_stride, kv_head_stride, \
- k_scale, k_zp, v_scale, v_zp);
- // TODO: Tune NUM_THREADS.
- template <typename T, typename CACHE_T, int BLOCK_SIZE,
- kv_cache_dtype KV_CACHE_DTYPE, int NUM_THREADS = 128>
- void paged_attention_v1_launcher(
- torch::Tensor& out, torch::Tensor& query, torch::Tensor& key_cache,
- torch::Tensor& value_cache, int num_kv_heads, float scale,
- torch::Tensor& block_tables, torch::Tensor& context_lens,
- int max_context_len, const c10::optional<torch::Tensor>& alibi_slopes,
- const float k_scale, const float k_zp, const float v_scale,
- const float v_zp) {
- int num_seqs = query.size(0);
- int num_heads = query.size(1);
- int head_size = query.size(2);
- int max_num_blocks_per_seq = block_tables.size(1);
- int q_stride = query.stride(0);
- int kv_block_stride = key_cache.stride(0);
- int kv_head_stride = key_cache.stride(1);
- int thread_group_size = MAX(WARP_SIZE / BLOCK_SIZE, 1);
- assert(head_size % thread_group_size == 0);
- // NOTE: alibi_slopes is optional.
- const float* alibi_slopes_ptr =
- alibi_slopes
- ? reinterpret_cast<const float*>(alibi_slopes.value().data_ptr())
- : nullptr;
- T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
- T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
- CACHE_T* key_cache_ptr = reinterpret_cast<CACHE_T*>(key_cache.data_ptr());
- CACHE_T* value_cache_ptr = reinterpret_cast<CACHE_T*>(value_cache.data_ptr());
- int* block_tables_ptr = block_tables.data_ptr<int>();
- int* context_lens_ptr = context_lens.data_ptr<int>();
- constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
- int padded_max_context_len =
- DIVIDE_ROUND_UP(max_context_len, BLOCK_SIZE) * BLOCK_SIZE;
- int logits_size = padded_max_context_len * sizeof(float);
- int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);
- // Python-side check in
- // aphrodite.worker.worker._check_if_can_support_max_seq_len Keep that in sync
- // with the logic here!
- int shared_mem_size = std::max(logits_size, outputs_size);
- dim3 grid(num_heads, num_seqs, 1);
- dim3 block(NUM_THREADS);
- const at::cuda::OptionalCUDAGuard device_guard(device_of(query));
- const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
- switch (head_size) {
- // NOTE: To reduce the compilation time, we only compile for the
- // head sizes that we use in the model. However, we can easily extend this
- // to support any head size which is a multiple of 16.
- case 64:
- LAUNCH_PAGED_ATTENTION_V1(64);
- break;
- case 80:
- LAUNCH_PAGED_ATTENTION_V1(80);
- break;
- case 96:
- LAUNCH_PAGED_ATTENTION_V1(96);
- break;
- case 112:
- LAUNCH_PAGED_ATTENTION_V1(112);
- break;
- case 128:
- LAUNCH_PAGED_ATTENTION_V1(128);
- break;
- case 256:
- LAUNCH_PAGED_ATTENTION_V1(256);
- break;
- default:
- TORCH_CHECK(false, "Unsupported head size: ", head_size);
- break;
- }
- }
- #define CALL_V1_LAUNCHER(T, CACHE_T, BLOCK_SIZE, KV_CACHE_DTYPE) \
- paged_attention_v1_launcher<T, CACHE_T, BLOCK_SIZE, KV_CACHE_DTYPE>( \
- out, query, key_cache, value_cache, num_kv_heads, scale, block_tables, \
- context_lens, max_context_len, alibi_slopes, k_scale, k_zp, v_scale, \
- v_zp);
- // NOTE: To reduce the compilation time, we omitted block sizes
- // 1, 2, 4, 64, 128, 256.
- #define CALL_V1_LAUNCHER_BLOCK_SIZE(T, CACHE_T, KV_CACHE_DTYPE) \
- switch (block_size) { \
- case 8: \
- CALL_V1_LAUNCHER(T, CACHE_T, 8, KV_CACHE_DTYPE); \
- break; \
- case 16: \
- CALL_V1_LAUNCHER(T, CACHE_T, 16, KV_CACHE_DTYPE); \
- break; \
- case 32: \
- CALL_V1_LAUNCHER(T, CACHE_T, 32, KV_CACHE_DTYPE); \
- break; \
- default: \
- TORCH_CHECK(false, "Unsupported block size: ", block_size); \
- break; \
- }
- void paged_attention_v1(
- torch::Tensor& out, // [num_seqs, num_heads, head_size]
- torch::Tensor& query, // [num_seqs, num_heads, head_size]
- torch::Tensor&
- key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
- torch::Tensor&
- value_cache, // [num_blocks, num_heads, head_size, block_size]
- int num_kv_heads, // [num_heads]
- float scale,
- torch::Tensor& block_tables, // [num_seqs, max_num_blocks_per_seq]
- torch::Tensor& context_lens, // [num_seqs]
- int block_size, int max_context_len,
- const c10::optional<torch::Tensor>& alibi_slopes,
- const std::string& kv_cache_dtype, const float k_scale = 1.0f,
- const float k_zp = 0.0f, const float v_scale = 1.0f,
- const float v_zp = 0.0f) {
- if (kv_cache_dtype == "auto") {
- if (query.dtype() == at::ScalarType::Float) {
- CALL_V1_LAUNCHER_BLOCK_SIZE(float, float, AUTO);
- } else if (query.dtype() == at::ScalarType::Half) {
- CALL_V1_LAUNCHER_BLOCK_SIZE(uint16_t, uint16_t, AUTO);
- } else if (query.dtype() == at::ScalarType::BFloat16) {
- CALL_V1_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, __nv_bfloat16, AUTO);
- } else {
- TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
- }
- #ifdef ENABLE_FP8_E5M2
- } else if (kv_cache_dtype == "fp8_e5m2") {
- if (query.dtype() == at::ScalarType::Float) {
- CALL_V1_LAUNCHER_BLOCK_SIZE(float, uint8_t, FP8_E5M2);
- } else if (query.dtype() == at::ScalarType::Half) {
- CALL_V1_LAUNCHER_BLOCK_SIZE(uint16_t, uint8_t, FP8_E5M2);
- } else if (query.dtype() == at::ScalarType::BFloat16) {
- CALL_V1_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, uint8_t, FP8_E5M2);
- } else {
- TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
- }
- #endif
- } else if (kv_cache_dtype == "int8") {
- if (query.dtype() == at::ScalarType::Float) {
- CALL_V1_LAUNCHER_BLOCK_SIZE(float, int8_t, INT8);
- } else if (query.dtype() == at::ScalarType::Half) {
- CALL_V1_LAUNCHER_BLOCK_SIZE(uint16_t, int8_t, INT8);
- } else if (query.dtype() == at::ScalarType::BFloat16) {
- CALL_V1_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, int8_t, INT8);
- } else {
- TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
- }
- } else {
- TORCH_CHECK(false, "Unsupported data type of kv cache: ", kv_cache_dtype);
- }
- }
- #define LAUNCH_PAGED_ATTENTION_V2(HEAD_SIZE) \
- aphrodite::paged_attention_v2_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, \
- NUM_THREADS, KV_CACHE_DTYPE, \
- PARTITION_SIZE> \
- <<<grid, block, shared_mem_size, stream>>>( \
- exp_sums_ptr, max_logits_ptr, tmp_out_ptr, query_ptr, key_cache_ptr, \
- value_cache_ptr, num_kv_heads, scale, block_tables_ptr, \
- context_lens_ptr, max_num_blocks_per_seq, alibi_slopes_ptr, \
- q_stride, kv_block_stride, kv_head_stride, k_scale, k_zp, v_scale, \
- v_zp); \
- aphrodite::paged_attention_v2_reduce_kernel<T, HEAD_SIZE, NUM_THREADS, \
- PARTITION_SIZE> \
- <<<reduce_grid, block, reduce_shared_mem_size, stream>>>( \
- out_ptr, exp_sums_ptr, max_logits_ptr, tmp_out_ptr, \
- context_lens_ptr, max_num_partitions);
- template <typename T, typename CACHE_T, int BLOCK_SIZE,
- kv_cache_dtype KV_CACHE_DTYPE, int NUM_THREADS = 128,
- int PARTITION_SIZE = 512>
- void paged_attention_v2_launcher(
- torch::Tensor& out, torch::Tensor& exp_sums, torch::Tensor& max_logits,
- torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache,
- torch::Tensor& value_cache, int num_kv_heads, float scale,
- torch::Tensor& block_tables, torch::Tensor& context_lens,
- int max_context_len, const c10::optional<torch::Tensor>& alibi_slopes,
- const float k_scale, const float k_zp, const float v_scale,
- const float v_zp) {
- int num_seqs = query.size(0);
- int num_heads = query.size(1);
- int head_size = query.size(2);
- int max_num_blocks_per_seq = block_tables.size(1);
- int q_stride = query.stride(0);
- int kv_block_stride = key_cache.stride(0);
- int kv_head_stride = key_cache.stride(1);
- int thread_group_size = MAX(WARP_SIZE / BLOCK_SIZE, 1);
- assert(head_size % thread_group_size == 0);
- // NOTE: alibi_slopes is optional.
- const float* alibi_slopes_ptr =
- alibi_slopes
- ? reinterpret_cast<const float*>(alibi_slopes.value().data_ptr())
- : nullptr;
- T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
- float* exp_sums_ptr = reinterpret_cast<float*>(exp_sums.data_ptr());
- float* max_logits_ptr = reinterpret_cast<float*>(max_logits.data_ptr());
- T* tmp_out_ptr = reinterpret_cast<T*>(tmp_out.data_ptr());
- T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
- CACHE_T* key_cache_ptr = reinterpret_cast<CACHE_T*>(key_cache.data_ptr());
- CACHE_T* value_cache_ptr = reinterpret_cast<CACHE_T*>(value_cache.data_ptr());
- int* block_tables_ptr = block_tables.data_ptr<int>();
- int* context_lens_ptr = context_lens.data_ptr<int>();
- constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
- int max_num_partitions = DIVIDE_ROUND_UP(max_context_len, PARTITION_SIZE);
- int logits_size = PARTITION_SIZE * sizeof(float);
- int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);
- // For paged attention v2 kernel.
- dim3 grid(num_heads, num_seqs, max_num_partitions);
- int shared_mem_size = std::max(logits_size, outputs_size);
- // For paged attention v2 reduce kernel.
- dim3 reduce_grid(num_heads, num_seqs);
- int reduce_shared_mem_size = 2 * max_num_partitions * sizeof(float);
- dim3 block(NUM_THREADS);
- const at::cuda::OptionalCUDAGuard device_guard(device_of(query));
- const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
- switch (head_size) {
- // NOTE: To reduce the compilation time, we only compile for the
- // head sizes that we use in the model. However, we can easily extend this
- // to support any head size which is a multiple of 16.
- case 64:
- LAUNCH_PAGED_ATTENTION_V2(64);
- break;
- case 80:
- LAUNCH_PAGED_ATTENTION_V2(80);
- break;
- case 96:
- LAUNCH_PAGED_ATTENTION_V2(96);
- break;
- case 112:
- LAUNCH_PAGED_ATTENTION_V2(112);
- break;
- case 128:
- LAUNCH_PAGED_ATTENTION_V2(128);
- break;
- case 256:
- LAUNCH_PAGED_ATTENTION_V2(256);
- break;
- default:
- TORCH_CHECK(false, "Unsupported head size: ", head_size);
- break;
- }
- }
- #define CALL_V2_LAUNCHER(T, CACHE_T, BLOCK_SIZE, KV_CACHE_DTYPE) \
- paged_attention_v2_launcher<T, CACHE_T, BLOCK_SIZE, KV_CACHE_DTYPE>( \
- out, exp_sums, max_logits, tmp_out, query, key_cache, value_cache, \
- num_kv_heads, scale, block_tables, context_lens, max_context_len, \
- alibi_slopes, k_scale, k_zp, v_scale, v_zp);
- // NOTE: To reduce the compilation time, we omitted block sizes
- // 1, 2, 4, 64, 128, 256.
- #define CALL_V2_LAUNCHER_BLOCK_SIZE(T, CACHE_T, KV_CACHE_DTYPE) \
- switch (block_size) { \
- case 8: \
- CALL_V2_LAUNCHER(T, CACHE_T, 8, KV_CACHE_DTYPE); \
- break; \
- case 16: \
- CALL_V2_LAUNCHER(T, CACHE_T, 16, KV_CACHE_DTYPE); \
- break; \
- case 32: \
- CALL_V2_LAUNCHER(T, CACHE_T, 32, KV_CACHE_DTYPE); \
- break; \
- default: \
- TORCH_CHECK(false, "Unsupported block size: ", block_size); \
- break; \
- }
- void paged_attention_v2(
- torch::Tensor& out, // [num_seqs, num_heads, head_size]
- torch::Tensor& exp_sums, // [num_seqs, num_heads, max_num_partitions]
- torch::Tensor& max_logits, // [num_seqs, num_heads, max_num_partitions]
- torch::Tensor&
- tmp_out, // [num_seqs, num_heads, max_num_partitions, head_size]
- torch::Tensor& query, // [num_seqs, num_heads, head_size]
- torch::Tensor&
- key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
- torch::Tensor&
- value_cache, // [num_blocks, num_heads, head_size, block_size]
- int num_kv_heads, // [num_heads]
- float scale,
- torch::Tensor& block_tables, // [num_seqs, max_num_blocks_per_seq]
- torch::Tensor& context_lens, // [num_seqs]
- int block_size, int max_context_len,
- const c10::optional<torch::Tensor>& alibi_slopes,
- const std::string& kv_cache_dtype, const float k_scale = 1.0f,
- const float k_zp = 0.0f, const float v_scale = 1.0f,
- const float v_zp = 0.0f) {
- if (kv_cache_dtype == "auto") {
- if (query.dtype() == at::ScalarType::Float) {
- CALL_V2_LAUNCHER_BLOCK_SIZE(float, float, AUTO);
- } else if (query.dtype() == at::ScalarType::Half) {
- CALL_V2_LAUNCHER_BLOCK_SIZE(uint16_t, uint16_t, AUTO);
- } else if (query.dtype() == at::ScalarType::BFloat16) {
- CALL_V2_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, __nv_bfloat16, AUTO);
- } else {
- TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
- }
- #ifdef ENABLE_FP8_E5M2
- } else if (kv_cache_dtype == "fp8_e5m2") {
- if (query.dtype() == at::ScalarType::Float) {
- CALL_V2_LAUNCHER_BLOCK_SIZE(float, uint8_t, FP8_E5M2);
- } else if (query.dtype() == at::ScalarType::Half) {
- CALL_V2_LAUNCHER_BLOCK_SIZE(uint16_t, uint8_t, FP8_E5M2);
- } else if (query.dtype() == at::ScalarType::BFloat16) {
- CALL_V2_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, uint8_t, FP8_E5M2);
- } else {
- TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
- }
- #endif
- } else if (kv_cache_dtype == "int8") {
- if (query.dtype() == at::ScalarType::Float) {
- CALL_V2_LAUNCHER_BLOCK_SIZE(float, int8_t, INT8);
- } else if (query.dtype() == at::ScalarType::Half) {
- CALL_V2_LAUNCHER_BLOCK_SIZE(uint16_t, int8_t, INT8);
- } else if (query.dtype() == at::ScalarType::BFloat16) {
- CALL_V2_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, int8_t, INT8);
- } else {
- TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
- }
- } else {
- TORCH_CHECK(false, "Unsupported data type of kv cache: ", kv_cache_dtype);
- }
- }
- #undef WARP_SIZE
- #undef MAX
- #undef MIN
- #undef DIVIDE_ROUND_UP
|