123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452 |
- /*
- * Adapted from https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp
- * and https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention_utils.h
- * Copyright (c) 2023, The PygmalionAI team.
- * Copyright (c) 2023, The vLLM team.
- * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #pragma once
- #include "attention_generic.cuh"
- #include "dtype_float32.cuh"
- #ifndef USE_ROCM
- #include <cuda_bf16.h>
- #include <cuda_fp16.h>
- #else
- #include <hip/hip_bf16.h>
- #include <hip/hip_fp16.h>
- typedef __hip_bfloat162 __nv_bfloat162;
- typedef __hip_bfloat16 __nv_bfloat16;
- #endif
- #include <stdint.h>
- namespace aphrodite {
- // Define custom BF16 vector data types.
- struct bf16_4_t {
- __nv_bfloat162 x;
- __nv_bfloat162 y;
- };
- struct bf16_8_t {
- __nv_bfloat162 x;
- __nv_bfloat162 y;
- __nv_bfloat162 z;
- __nv_bfloat162 w;
- };
- // BF16 vector types for Q, K, V.
- template<>
- struct Vec<__nv_bfloat16, 1> {
- using Type = __nv_bfloat16;
- };
- template<>
- struct Vec<__nv_bfloat16, 2> {
- using Type = __nv_bfloat162;
- };
- template<>
- struct Vec<__nv_bfloat16, 4> {
- using Type = bf16_4_t;
- };
- template<>
- struct Vec<__nv_bfloat16, 8> {
- using Type = bf16_8_t;
- };
- // FP32 accumulator vector types corresponding to Vec.
- template<>
- struct FloatVec<__nv_bfloat16> {
- using Type = float;
- };
- template<>
- struct FloatVec<__nv_bfloat162> {
- using Type = float2;
- };
- template<>
- struct FloatVec<bf16_4_t> {
- using Type = Float4_;
- };
- template<>
- struct FloatVec<bf16_8_t> {
- using Type = Float8_;
- };
- // Utility functions for type conversions.
- inline __device__ float2 bf1622float2(const __nv_bfloat162 val) {
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
- assert(false);
- #else
- return __bfloat1622float2(val);
- #endif
- }
- inline __device__ __nv_bfloat162 bf162bf162(const __nv_bfloat16 val) {
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
- assert(false);
- #else
- return __bfloat162bfloat162(val);
- #endif
- }
- // Vector addition.
- inline __device__ __nv_bfloat16 add(__nv_bfloat16 a, __nv_bfloat16 b) {
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
- assert(false);
- #else
- #ifndef USE_ROCM
- return a + b;
- #else
- return __hadd(a, b);
- #endif
- #endif
- }
- inline __device__ __nv_bfloat162 add(__nv_bfloat162 a, __nv_bfloat162 b) {
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
- assert(false);
- #else
- return __hadd2(a, b);
- #endif
- }
- inline __device__ bf16_4_t add(bf16_4_t a, bf16_4_t b) {
- bf16_4_t c;
- c.x = add(a.x, b.x);
- c.y = add(a.y, b.y);
- return c;
- }
- inline __device__ bf16_8_t add(bf16_8_t a, bf16_8_t b) {
- bf16_8_t c;
- c.x = add(a.x, b.x);
- c.y = add(a.y, b.y);
- c.z = add(a.z, b.z);
- c.w = add(a.w, b.w);
- return c;
- }
- inline __device__ float2 add(__nv_bfloat162 a, float2 fb) {
- float2 fa = bf1622float2(a);
- return add(fa, fb);
- }
- inline __device__ Float4_ add(bf16_4_t a, Float4_ fb) {
- Float4_ fc;
- fc.x = add(a.x, fb.x);
- fc.y = add(a.y, fb.y);
- return fc;
- }
- inline __device__ Float8_ add(bf16_8_t a, Float8_ fb) {
- Float8_ fc;
- fc.x = add(a.x, fb.x);
- fc.y = add(a.y, fb.y);
- fc.z = add(a.z, fb.z);
- fc.w = add(a.w, fb.w);
- return fc;
- }
- // Vector multiplication.
- template<>
- inline __device__ __nv_bfloat16 mul(__nv_bfloat16 a, __nv_bfloat16 b) {
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
- assert(false);
- #else
- return __hmul(a, b);
- #endif
- }
- template<>
- inline __device__ __nv_bfloat162 mul(__nv_bfloat162 a, __nv_bfloat162 b) {
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
- assert(false);
- #else
- return __hmul2(a, b);
- #endif
- }
- template<>
- inline __device__ __nv_bfloat162 mul(__nv_bfloat16 a, __nv_bfloat162 b) {
- return mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(bf162bf162(a), b);
- }
- template<>
- inline __device__ bf16_4_t mul(bf16_4_t a, bf16_4_t b) {
- bf16_4_t c;
- c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
- c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
- return c;
- }
- template<>
- inline __device__ bf16_4_t mul(__nv_bfloat16 a, bf16_4_t b) {
- __nv_bfloat162 s = bf162bf162(a);
- bf16_4_t c;
- c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.x);
- c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.y);
- return c;
- }
- template<>
- inline __device__ bf16_8_t mul(bf16_8_t a, bf16_8_t b) {
- bf16_8_t c;
- c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
- c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
- c.z = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.z, b.z);
- c.w = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.w, b.w);
- return c;
- }
- template<>
- inline __device__ bf16_8_t mul(__nv_bfloat16 a, bf16_8_t b) {
- __nv_bfloat162 s = bf162bf162(a);
- bf16_8_t c;
- c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.x);
- c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.y);
- c.z = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.z);
- c.w = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.w);
- return c;
- }
- template<>
- inline __device__ float mul(__nv_bfloat16 a, __nv_bfloat16 b) {
- float fa = __bfloat162float(a);
- float fb = __bfloat162float(b);
- return fa * fb;
- }
- template<>
- inline __device__ float2 mul(__nv_bfloat162 a, __nv_bfloat162 b) {
- float2 fa = bf1622float2(a);
- float2 fb = bf1622float2(b);
- return mul<float2, float2, float2>(fa, fb);
- }
- template<>
- inline __device__ float2 mul(__nv_bfloat16 a, __nv_bfloat162 b) {
- return mul<float2, __nv_bfloat162, __nv_bfloat162>(bf162bf162(a), b);
- }
- template<>
- inline __device__ Float4_ mul(bf16_4_t a, bf16_4_t b) {
- Float4_ fc;
- fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
- fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
- return fc;
- }
- template<>
- inline __device__ Float4_ mul(__nv_bfloat16 a, bf16_4_t b) {
- __nv_bfloat162 s = bf162bf162(a);
- Float4_ fc;
- fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.x);
- fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.y);
- return fc;
- }
- template<>
- inline __device__ Float8_ mul(bf16_8_t a, bf16_8_t b) {
- Float8_ fc;
- fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
- fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
- fc.z = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.z, b.z);
- fc.w = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.w, b.w);
- return fc;
- }
- template<>
- inline __device__ Float8_ mul(__nv_bfloat16 a, bf16_8_t b) {
- __nv_bfloat162 s = bf162bf162(a);
- Float8_ fc;
- fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.x);
- fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.y);
- fc.z = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.z);
- fc.w = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.w);
- return fc;
- }
- // Vector fused multiply-add.
- inline __device__ __nv_bfloat162 fma(__nv_bfloat162 a, __nv_bfloat162 b, __nv_bfloat162 c) {
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
- assert(false);
- #else
- return __hfma2(a, b, c);
- #endif
- }
- inline __device__ __nv_bfloat162 fma(__nv_bfloat16 a, __nv_bfloat162 b, __nv_bfloat162 c) {
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
- assert(false);
- #else
- return __hfma2(bf162bf162(a), b, c);
- #endif
- }
- inline __device__ bf16_4_t fma(bf16_4_t a, bf16_4_t b, bf16_4_t c) {
- bf16_4_t d;
- d.x = fma(a.x, b.x, c.x);
- d.y = fma(a.y, b.y, c.y);
- return d;
- }
- inline __device__ bf16_4_t fma(__nv_bfloat16 a, bf16_4_t b, bf16_4_t c) {
- __nv_bfloat162 s = bf162bf162(a);
- bf16_4_t d;
- d.x = fma(s, b.x, c.x);
- d.y = fma(s, b.y, c.y);
- return d;
- }
- inline __device__ bf16_8_t fma(bf16_8_t a, bf16_8_t b, bf16_8_t c) {
- bf16_8_t d;
- d.x = fma(a.x, b.x, c.x);
- d.y = fma(a.y, b.y, c.y);
- d.z = fma(a.z, b.z, c.z);
- d.w = fma(a.w, b.w, c.w);
- return d;
- }
- inline __device__ bf16_8_t fma(__nv_bfloat16 a, bf16_8_t b, bf16_8_t c) {
- __nv_bfloat162 s = bf162bf162(a);
- bf16_8_t d;
- d.x = fma(s, b.x, c.x);
- d.y = fma(s, b.y, c.y);
- d.z = fma(s, b.z, c.z);
- d.w = fma(s, b.w, c.w);
- return d;
- }
- inline __device__ float fma(__nv_bfloat16 a, __nv_bfloat16 b, float fc) {
- return __bfloat162float(a) * __bfloat162float(b) + fc;
- }
- inline __device__ float2 fma(__nv_bfloat162 a, __nv_bfloat162 b, float2 fc) {
- float2 fa = bf1622float2(a);
- float2 fb = bf1622float2(b);
- return fma(fa, fb, fc);
- }
- inline __device__ float2 fma(__nv_bfloat16 a, __nv_bfloat162 b, float2 fc) {
- return fma(bf162bf162(a), b, fc);
- }
- inline __device__ Float4_ fma(bf16_4_t a, bf16_4_t b, Float4_ fc) {
- Float4_ fd;
- fd.x = fma(a.x, b.x, fc.x);
- fd.y = fma(a.y, b.y, fc.y);
- return fd;
- }
- inline __device__ Float4_ fma(__nv_bfloat16 a, bf16_4_t b, Float4_ fc) {
- __nv_bfloat162 s = bf162bf162(a);
- Float4_ fd;
- fd.x = fma(s, b.x, fc.x);
- fd.y = fma(s, b.y, fc.y);
- return fd;
- }
- inline __device__ Float8_ fma(bf16_8_t a, bf16_8_t b, Float8_ fc) {
- Float8_ fd;
- fd.x = fma(a.x, b.x, fc.x);
- fd.y = fma(a.y, b.y, fc.y);
- fd.z = fma(a.z, b.z, fc.z);
- fd.w = fma(a.w, b.w, fc.w);
- return fd;
- }
- inline __device__ Float8_ fma(__nv_bfloat16 a, bf16_8_t b, Float8_ fc) {
- __nv_bfloat162 s = bf162bf162(a);
- Float8_ fd;
- fd.x = fma(s, b.x, fc.x);
- fd.y = fma(s, b.y, fc.y);
- fd.z = fma(s, b.z, fc.z);
- fd.w = fma(s, b.w, fc.w);
- return fd;
- }
- // Vector sum.
- template<>
- inline __device__ float sum(__nv_bfloat16 v) {
- return __bfloat162float(v);
- }
- template<>
- inline __device__ float sum(__nv_bfloat162 v) {
- float2 vf = bf1622float2(v);
- return vf.x + vf.y;
- }
- template<>
- inline __device__ float sum(bf16_4_t v) {
- return sum(v.x) + sum(v.y);
- }
- template<>
- inline __device__ float sum(bf16_8_t v) {
- return sum(v.x) + sum(v.y) + sum(v.z) + sum(v.w);
- }
- // From float32 to bfloat16.
- inline __device__ void from_float(__nv_bfloat16& dst, float src) {
- dst = __float2bfloat16(src);
- }
- inline __device__ void from_float(__nv_bfloat162& dst, float2 src) {
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
- assert(false);
- #else
- dst = __float22bfloat162_rn(src);
- #endif
- }
- inline __device__ void from_float(bf16_4_t& dst, Float4_ src) {
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
- assert(false);
- #else
- dst.x = __float22bfloat162_rn(src.x);
- dst.y = __float22bfloat162_rn(src.y);
- #endif
- }
- inline __device__ void from_float(bf16_8_t& dst, Float8_ src) {
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
- assert(false);
- #else
- dst.x = __float22bfloat162_rn(src.x);
- dst.y = __float22bfloat162_rn(src.y);
- dst.z = __float22bfloat162_rn(src.z);
- dst.w = __float22bfloat162_rn(src.w);
- #endif
- }
- // From bfloat16 to float32.
- inline __device__ float to_float(__nv_bfloat16 u) {
- return __bfloat162float(u);
- }
- // Zero-out a variable.
- inline __device__ void zero(__nv_bfloat16& dst) {
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
- assert(false);
- #else
- // Same as CUDART_ZERO_BF16 introduced in CUDA 12.2.
- dst = __ushort_as_bfloat16((unsigned short)0x0000U);
- #endif
- }
- } // namespace aphrodite
|