123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731 |
- # ruff: noqa
- # code borrowed from https://github.com/pytorch/pytorch/blob/main/torch/utils/collect_env.py
- # and https://github.com/vllm-project/vllm/blob/e14fb22e59a1a9aa745b2a72211973838f6a5993/collect_env.py
- # Unlike the rest of the PyTorch this file must be python2 compliant.
- # This script outputs relevant system environment info
- # Run it with `python collect_env.py` or `python -m torch.utils.collect_env`
- import datetime
- import locale
- import os
- import re
- import subprocess
- import sys
- from collections import namedtuple
- try:
- import torch
- TORCH_AVAILABLE = True
- except (ImportError, NameError, AttributeError, OSError):
- TORCH_AVAILABLE = False
- # System Environment Information
- SystemEnv = namedtuple(
- 'SystemEnv',
- [
- 'torch_version',
- 'is_debug_build',
- 'cuda_compiled_version',
- 'gcc_version',
- 'clang_version',
- 'cmake_version',
- 'os',
- 'libc_version',
- 'python_version',
- 'python_platform',
- 'is_cuda_available',
- 'cuda_runtime_version',
- 'cuda_module_loading',
- 'nvidia_driver_version',
- 'nvidia_gpu_models',
- 'cudnn_version',
- 'pip_version', # 'pip' or 'pip3'
- 'pip_packages',
- 'conda_packages',
- 'hip_compiled_version',
- 'hip_runtime_version',
- 'miopen_runtime_version',
- 'caching_allocator_config',
- 'is_xnnpack_available',
- 'cpu_info',
- 'rocm_version', # aphrodite specific field
- 'neuron_sdk_version', # aphrodite specific field
- 'aphrodite_version', # aphrodite specific field
- 'aphrodite_build_flags', # aphrodite specific field
- 'gpu_topo', # aphrodite specific field
- ])
- DEFAULT_CONDA_PATTERNS = {
- "torch",
- "numpy",
- "cudatoolkit",
- "soumith",
- "mkl",
- "magma",
- "triton",
- "optree",
- "nccl",
- "transformers",
- "zmq",
- }
- DEFAULT_PIP_PATTERNS = {
- "torch",
- "numpy",
- "mypy",
- "flake8",
- "triton",
- "optree",
- "onnx",
- "nccl",
- "transformers",
- "zmq",
- }
- def run(command):
- """Return (return-code, stdout, stderr)."""
- shell = True if type(command) is str else False
- p = subprocess.Popen(command,
- stdout=subprocess.PIPE,
- stderr=subprocess.PIPE,
- shell=shell)
- raw_output, raw_err = p.communicate()
- rc = p.returncode
- if get_platform() == 'win32':
- enc = 'oem'
- else:
- enc = locale.getpreferredencoding()
- output = raw_output.decode(enc)
- err = raw_err.decode(enc)
- return rc, output.strip(), err.strip()
- def run_and_read_all(run_lambda, command):
- """Run command using run_lambda; reads and returns entire output if rc is 0."""
- rc, out, _ = run_lambda(command)
- if rc != 0:
- return None
- return out
- def run_and_parse_first_match(run_lambda, command, regex):
- """Run command using run_lambda, returns the first regex match if it exists."""
- rc, out, _ = run_lambda(command)
- if rc != 0:
- return None
- match = re.search(regex, out)
- if match is None:
- return None
- return match.group(1)
- def run_and_return_first_line(run_lambda, command):
- """Run command using run_lambda and returns first line if output is not empty."""
- rc, out, _ = run_lambda(command)
- if rc != 0:
- return None
- return out.split('\n')[0]
- def get_conda_packages(run_lambda, patterns=None):
- if patterns is None:
- patterns = DEFAULT_CONDA_PATTERNS
- conda = os.environ.get('CONDA_EXE', 'conda')
- out = run_and_read_all(run_lambda, "{} list".format(conda))
- if out is None:
- return out
- return "\n".join(line for line in out.splitlines()
- if not line.startswith("#") and any(name in line
- for name in patterns))
- def get_gcc_version(run_lambda):
- return run_and_parse_first_match(run_lambda, 'gcc --version', r'gcc (.*)')
- def get_clang_version(run_lambda):
- return run_and_parse_first_match(run_lambda, 'clang --version',
- r'clang version (.*)')
- def get_cmake_version(run_lambda):
- return run_and_parse_first_match(run_lambda, 'cmake --version',
- r'cmake (.*)')
- def get_nvidia_driver_version(run_lambda):
- if get_platform() == 'darwin':
- cmd = 'kextstat | grep -i cuda'
- return run_and_parse_first_match(run_lambda, cmd,
- r'com[.]nvidia[.]CUDA [(](.*?)[)]')
- smi = get_nvidia_smi()
- return run_and_parse_first_match(run_lambda, smi,
- r'Driver Version: (.*?) ')
- def get_gpu_info(run_lambda):
- if get_platform() == 'darwin' or (TORCH_AVAILABLE and hasattr(
- torch.version, 'hip') and torch.version.hip is not None):
- if TORCH_AVAILABLE and torch.cuda.is_available():
- if torch.version.hip is not None:
- prop = torch.cuda.get_device_properties(0)
- if hasattr(prop, "gcnArchName"):
- gcnArch = " ({})".format(prop.gcnArchName)
- else:
- gcnArch = "NoGCNArchNameOnOldPyTorch"
- else:
- gcnArch = ""
- return torch.cuda.get_device_name(None) + gcnArch
- return None
- smi = get_nvidia_smi()
- uuid_regex = re.compile(r' \(UUID: .+?\)')
- rc, out, _ = run_lambda(smi + ' -L')
- if rc != 0:
- return None
- # Anonymize GPUs by removing their UUID
- return re.sub(uuid_regex, '', out)
- def get_running_cuda_version(run_lambda):
- return run_and_parse_first_match(run_lambda, 'nvcc --version',
- r'release .+ V(.*)')
- def get_cudnn_version(run_lambda):
- """Return a list of libcudnn.so; it's hard to tell which one is being used."""
- if get_platform() == 'win32':
- system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
- cuda_path = os.environ.get('CUDA_PATH', "%CUDA_PATH%")
- where_cmd = os.path.join(system_root, 'System32', 'where')
- cudnn_cmd = '{} /R "{}\\bin" cudnn*.dll'.format(where_cmd, cuda_path)
- elif get_platform() == 'darwin':
- # CUDA libraries and drivers can be found in /usr/local/cuda/. See
- # https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install
- # https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac
- # Use CUDNN_LIBRARY when cudnn library is installed elsewhere.
- cudnn_cmd = 'ls /usr/local/cuda/lib/libcudnn*'
- else:
- cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev'
- rc, out, _ = run_lambda(cudnn_cmd)
- # find will return 1 if there are permission errors or if not found
- if len(out) == 0 or (rc != 1 and rc != 0):
- l = os.environ.get('CUDNN_LIBRARY')
- if l is not None and os.path.isfile(l):
- return os.path.realpath(l)
- return None
- files_set = set()
- for fn in out.split('\n'):
- fn = os.path.realpath(fn) # eliminate symbolic links
- if os.path.isfile(fn):
- files_set.add(fn)
- if not files_set:
- return None
- # Alphabetize the result because the order is non-deterministic otherwise
- files = sorted(files_set)
- if len(files) == 1:
- return files[0]
- result = '\n'.join(files)
- return 'Probably one of the following:\n{}'.format(result)
- def get_nvidia_smi():
- # Note: nvidia-smi is currently available only on Windows and Linux
- smi = 'nvidia-smi'
- if get_platform() == 'win32':
- system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
- program_files_root = os.environ.get('PROGRAMFILES',
- 'C:\\Program Files')
- legacy_path = os.path.join(program_files_root, 'NVIDIA Corporation',
- 'NVSMI', smi)
- new_path = os.path.join(system_root, 'System32', smi)
- smis = [new_path, legacy_path]
- for candidate_smi in smis:
- if os.path.exists(candidate_smi):
- smi = '"{}"'.format(candidate_smi)
- break
- return smi
- def get_rocm_version(run_lambda):
- """Returns the ROCm version if available, otherwise 'N/A'."""
- return run_and_parse_first_match(run_lambda, 'hipcc --version',
- r'HIP version: (\S+)')
- def get_neuron_sdk_version(run_lambda):
- # Adapted from your install script
- try:
- result = run_lambda(["neuron-ls"])
- return result if result[0] == 0 else 'N/A'
- except Exception:
- return 'N/A'
- def get_aphrodite_version():
- try:
- import aphrodite
- return aphrodite.__version__
- except ImportError:
- return 'N/A'
- def summarize_aphrodite_build_flags():
- # This could be a static method if the flags are constant, or dynamic if you need to check environment variables, etc.
- return 'CUDA Archs: {}; ROCm: {}; Neuron: {}'.format(
- os.environ.get('TORCH_CUDA_ARCH_LIST', 'Not Set'),
- 'Enabled' if os.environ.get('ROCM_HOME') else 'Disabled',
- 'Enabled' if os.environ.get('NEURON_CORES') else 'Disabled',
- )
- def get_gpu_topo(run_lambda):
- if get_platform() == 'linux':
- return run_and_read_all(run_lambda, 'nvidia-smi topo -m')
- return None
- # example outputs of CPU infos
- # * linux
- # Architecture: x86_64
- # CPU op-mode(s): 32-bit, 64-bit
- # Address sizes: 46 bits physical, 48 bits virtual
- # Byte Order: Little Endian
- # CPU(s): 128
- # On-line CPU(s) list: 0-127
- # Vendor ID: GenuineIntel
- # Model name: Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
- # CPU family: 6
- # Model: 106
- # Thread(s) per core: 2
- # Core(s) per socket: 32
- # Socket(s): 2
- # Stepping: 6
- # BogoMIPS: 5799.78
- # Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr
- # sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl
- # xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16
- # pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand
- # hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced
- # fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap
- # avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1
- # xsaves wbnoinvd ida arat avx512vbmi pku ospke avx512_vbmi2 gfni vaes vpclmulqdq
- # avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear flush_l1d arch_capabilities
- # Virtualization features:
- # Hypervisor vendor: KVM
- # Virtualization type: full
- # Caches (sum of all):
- # L1d: 3 MiB (64 instances)
- # L1i: 2 MiB (64 instances)
- # L2: 80 MiB (64 instances)
- # L3: 108 MiB (2 instances)
- # NUMA:
- # NUMA node(s): 2
- # NUMA node0 CPU(s): 0-31,64-95
- # NUMA node1 CPU(s): 32-63,96-127
- # Vulnerabilities:
- # Itlb multihit: Not affected
- # L1tf: Not affected
- # Mds: Not affected
- # Meltdown: Not affected
- # Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
- # Retbleed: Not affected
- # Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
- # Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
- # Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
- # Srbds: Not affected
- # Tsx async abort: Not affected
- # * win32
- # Architecture=9
- # CurrentClockSpeed=2900
- # DeviceID=CPU0
- # Family=179
- # L2CacheSize=40960
- # L2CacheSpeed=
- # Manufacturer=GenuineIntel
- # MaxClockSpeed=2900
- # Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
- # ProcessorType=3
- # Revision=27142
- #
- # Architecture=9
- # CurrentClockSpeed=2900
- # DeviceID=CPU1
- # Family=179
- # L2CacheSize=40960
- # L2CacheSpeed=
- # Manufacturer=GenuineIntel
- # MaxClockSpeed=2900
- # Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
- # ProcessorType=3
- # Revision=27142
- def get_cpu_info(run_lambda):
- rc, out, err = 0, '', ''
- if get_platform() == 'linux':
- rc, out, err = run_lambda('lscpu')
- elif get_platform() == 'win32':
- rc, out, err = run_lambda(
- 'wmic cpu get Name,Manufacturer,Family,Architecture,ProcessorType,DeviceID, \
- CurrentClockSpeed,MaxClockSpeed,L2CacheSize,L2CacheSpeed,Revision /VALUE'
- )
- elif get_platform() == 'darwin':
- rc, out, err = run_lambda("sysctl -n machdep.cpu.brand_string")
- cpu_info = 'None'
- if rc == 0:
- cpu_info = out
- else:
- cpu_info = err
- return cpu_info
- def get_platform():
- if sys.platform.startswith('linux'):
- return 'linux'
- elif sys.platform.startswith('win32'):
- return 'win32'
- elif sys.platform.startswith('cygwin'):
- return 'cygwin'
- elif sys.platform.startswith('darwin'):
- return 'darwin'
- else:
- return sys.platform
- def get_mac_version(run_lambda):
- return run_and_parse_first_match(run_lambda, 'sw_vers -productVersion',
- r'(.*)')
- def get_windows_version(run_lambda):
- system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
- wmic_cmd = os.path.join(system_root, 'System32', 'Wbem', 'wmic')
- findstr_cmd = os.path.join(system_root, 'System32', 'findstr')
- return run_and_read_all(
- run_lambda,
- '{} os get Caption | {} /v Caption'.format(wmic_cmd, findstr_cmd))
- def get_lsb_version(run_lambda):
- return run_and_parse_first_match(run_lambda, 'lsb_release -a',
- r'Description:\t(.*)')
- def check_release_file(run_lambda):
- return run_and_parse_first_match(run_lambda, 'cat /etc/*-release',
- r'PRETTY_NAME="(.*)"')
- def get_os(run_lambda):
- from platform import machine
- platform = get_platform()
- if platform == 'win32' or platform == 'cygwin':
- return get_windows_version(run_lambda)
- if platform == 'darwin':
- version = get_mac_version(run_lambda)
- if version is None:
- return None
- return 'macOS {} ({})'.format(version, machine())
- if platform == 'linux':
- # Ubuntu/Debian based
- desc = get_lsb_version(run_lambda)
- if desc is not None:
- return '{} ({})'.format(desc, machine())
- # Try reading /etc/*-release
- desc = check_release_file(run_lambda)
- if desc is not None:
- return '{} ({})'.format(desc, machine())
- return '{} ({})'.format(platform, machine())
- # Unknown platform
- return platform
- def get_python_platform():
- import platform
- return platform.platform()
- def get_libc_version():
- import platform
- if get_platform() != 'linux':
- return 'N/A'
- return '-'.join(platform.libc_ver())
- def get_pip_packages(run_lambda, patterns=None):
- """Return `pip list` output. Note: will also find conda-installed pytorch and numpy packages."""
- if patterns is None:
- patterns = DEFAULT_PIP_PATTERNS
- # People generally have `pip` as `pip` or `pip3`
- # But here it is invoked as `python -mpip`
- def run_with_pip(pip):
- out = run_and_read_all(run_lambda, pip + ["list", "--format=freeze"])
- return "\n".join(line for line in out.splitlines()
- if any(name in line for name in patterns))
- pip_version = 'pip3' if sys.version[0] == '3' else 'pip'
- out = run_with_pip([sys.executable, '-mpip'])
- return pip_version, out
- def get_cachingallocator_config():
- ca_config = os.environ.get('PYTORCH_CUDA_ALLOC_CONF', '')
- return ca_config
- def get_cuda_module_loading_config():
- if TORCH_AVAILABLE and torch.cuda.is_available():
- torch.cuda.init()
- config = os.environ.get('CUDA_MODULE_LOADING', '')
- return config
- else:
- return "N/A"
- def is_xnnpack_available():
- if TORCH_AVAILABLE:
- import torch.backends.xnnpack
- return str(
- torch.backends.xnnpack.enabled) # type: ignore[attr-defined]
- else:
- return "N/A"
- def get_env_info():
- run_lambda = run
- pip_version, pip_list_output = get_pip_packages(run_lambda)
- if TORCH_AVAILABLE:
- version_str = torch.__version__
- debug_mode_str = str(torch.version.debug)
- cuda_available_str = str(torch.cuda.is_available())
- cuda_version_str = torch.version.cuda
- if not hasattr(torch.version,
- 'hip') or torch.version.hip is None: # cuda version
- hip_compiled_version = hip_runtime_version = miopen_runtime_version = 'N/A'
- else: # HIP version
- def get_version_or_na(cfg, prefix):
- _lst = [s.rsplit(None, 1)[-1] for s in cfg if prefix in s]
- return _lst[0] if _lst else 'N/A'
- cfg = torch._C._show_config().split('\n')
- hip_runtime_version = get_version_or_na(cfg, 'HIP Runtime')
- miopen_runtime_version = get_version_or_na(cfg, 'MIOpen')
- cuda_version_str = 'N/A'
- hip_compiled_version = torch.version.hip
- else:
- version_str = debug_mode_str = cuda_available_str = cuda_version_str = 'N/A'
- hip_compiled_version = hip_runtime_version = miopen_runtime_version = 'N/A'
- sys_version = sys.version.replace("\n", " ")
- conda_packages = get_conda_packages(run_lambda)
- rocm_version = get_rocm_version(run_lambda)
- neuron_sdk_version = get_neuron_sdk_version(run_lambda)
- aphrodite_version = get_aphrodite_version()
- aphrodite_build_flags = summarize_aphrodite_build_flags()
- gpu_topo = get_gpu_topo(run_lambda)
- return SystemEnv(
- torch_version=version_str,
- is_debug_build=debug_mode_str,
- python_version='{} ({}-bit runtime)'.format(
- sys_version,
- sys.maxsize.bit_length() + 1),
- python_platform=get_python_platform(),
- is_cuda_available=cuda_available_str,
- cuda_compiled_version=cuda_version_str,
- cuda_runtime_version=get_running_cuda_version(run_lambda),
- cuda_module_loading=get_cuda_module_loading_config(),
- nvidia_gpu_models=get_gpu_info(run_lambda),
- nvidia_driver_version=get_nvidia_driver_version(run_lambda),
- cudnn_version=get_cudnn_version(run_lambda),
- hip_compiled_version=hip_compiled_version,
- hip_runtime_version=hip_runtime_version,
- miopen_runtime_version=miopen_runtime_version,
- pip_version=pip_version,
- pip_packages=pip_list_output,
- conda_packages=conda_packages,
- os=get_os(run_lambda),
- libc_version=get_libc_version(),
- gcc_version=get_gcc_version(run_lambda),
- clang_version=get_clang_version(run_lambda),
- cmake_version=get_cmake_version(run_lambda),
- caching_allocator_config=get_cachingallocator_config(),
- is_xnnpack_available=is_xnnpack_available(),
- cpu_info=get_cpu_info(run_lambda),
- rocm_version=rocm_version,
- neuron_sdk_version=neuron_sdk_version,
- aphrodite_version=aphrodite_version,
- aphrodite_build_flags=aphrodite_build_flags,
- gpu_topo=gpu_topo,
- )
- env_info_fmt = """
- PyTorch version: {torch_version}
- Is debug build: {is_debug_build}
- CUDA used to build PyTorch: {cuda_compiled_version}
- ROCM used to build PyTorch: {hip_compiled_version}
- OS: {os}
- GCC version: {gcc_version}
- Clang version: {clang_version}
- CMake version: {cmake_version}
- Libc version: {libc_version}
- Python version: {python_version}
- Python platform: {python_platform}
- Is CUDA available: {is_cuda_available}
- CUDA runtime version: {cuda_runtime_version}
- CUDA_MODULE_LOADING set to: {cuda_module_loading}
- GPU models and configuration: {nvidia_gpu_models}
- Nvidia driver version: {nvidia_driver_version}
- cuDNN version: {cudnn_version}
- HIP runtime version: {hip_runtime_version}
- MIOpen runtime version: {miopen_runtime_version}
- Is XNNPACK available: {is_xnnpack_available}
- CPU:
- {cpu_info}
- Versions of relevant libraries:
- {pip_packages}
- {conda_packages}
- """.strip()
- # both the above code and the following code use `strip()` to
- # remove leading/trailing whitespaces, so we need to add a newline
- # in between to separate the two sections
- env_info_fmt += "\n"
- env_info_fmt += """
- ROCM Version: {rocm_version}
- Neuron SDK Version: {neuron_sdk_version}
- Aphrodite Version: {aphrodite_version}
- Aphrodite Build Flags:
- {aphrodite_build_flags}
- GPU Topology:
- {gpu_topo}
- """.strip()
- def pretty_str(envinfo):
- def replace_nones(dct, replacement='Could not collect'):
- for key in dct.keys():
- if dct[key] is not None:
- continue
- dct[key] = replacement
- return dct
- def replace_bools(dct, true='Yes', false='No'):
- for key in dct.keys():
- if dct[key] is True:
- dct[key] = true
- elif dct[key] is False:
- dct[key] = false
- return dct
- def prepend(text, tag='[prepend]'):
- lines = text.split('\n')
- updated_lines = [tag + line for line in lines]
- return '\n'.join(updated_lines)
- def replace_if_empty(text, replacement='No relevant packages'):
- if text is not None and len(text) == 0:
- return replacement
- return text
- def maybe_start_on_next_line(string):
- # If `string` is multiline, prepend a \n to it.
- if string is not None and len(string.split('\n')) > 1:
- return '\n{}\n'.format(string)
- return string
- mutable_dict = envinfo._asdict()
- # If nvidia_gpu_models is multiline, start on the next line
- mutable_dict['nvidia_gpu_models'] = \
- maybe_start_on_next_line(envinfo.nvidia_gpu_models)
- # If the machine doesn't have CUDA, report some fields as 'No CUDA'
- dynamic_cuda_fields = [
- 'cuda_runtime_version',
- 'nvidia_gpu_models',
- 'nvidia_driver_version',
- ]
- all_cuda_fields = dynamic_cuda_fields + ['cudnn_version']
- all_dynamic_cuda_fields_missing = all(mutable_dict[field] is None
- for field in dynamic_cuda_fields)
- if TORCH_AVAILABLE and not torch.cuda.is_available(
- ) and all_dynamic_cuda_fields_missing:
- for field in all_cuda_fields:
- mutable_dict[field] = 'No CUDA'
- if envinfo.cuda_compiled_version is None:
- mutable_dict['cuda_compiled_version'] = 'None'
- # Replace True with Yes, False with No
- mutable_dict = replace_bools(mutable_dict)
- # Replace all None objects with 'Could not collect'
- mutable_dict = replace_nones(mutable_dict)
- # If either of these are '', replace with 'No relevant packages'
- mutable_dict['pip_packages'] = replace_if_empty(
- mutable_dict['pip_packages'])
- mutable_dict['conda_packages'] = replace_if_empty(
- mutable_dict['conda_packages'])
- # Tag conda and pip packages with a prefix
- # If they were previously None, they'll show up as ie '[conda] Could not collect'
- if mutable_dict['pip_packages']:
- mutable_dict['pip_packages'] = prepend(
- mutable_dict['pip_packages'], '[{}] '.format(envinfo.pip_version))
- if mutable_dict['conda_packages']:
- mutable_dict['conda_packages'] = prepend(
- mutable_dict['conda_packages'], '[conda] ')
- mutable_dict['cpu_info'] = envinfo.cpu_info
- return env_info_fmt.format(**mutable_dict)
- def get_pretty_env_info():
- return pretty_str(get_env_info())
- def main():
- print("Collecting environment information...")
- output = get_pretty_env_info()
- print(output)
- if TORCH_AVAILABLE and hasattr(torch, 'utils') and hasattr(
- torch.utils, '_crash_handler'):
- minidump_dir = torch.utils._crash_handler.DEFAULT_MINIDUMP_DIR
- if sys.platform == "linux" and os.path.exists(minidump_dir):
- dumps = [
- os.path.join(minidump_dir, dump)
- for dump in os.listdir(minidump_dir)
- ]
- latest = max(dumps, key=os.path.getctime)
- ctime = os.path.getctime(latest)
- creation_time = datetime.datetime.fromtimestamp(ctime).strftime(
- '%Y-%m-%d %H:%M:%S')
- msg = "\n*** Detected a minidump at {} created on {}, ".format(latest, creation_time) + \
- "if this is related to your bug please include it when you file a report ***"
- print(msg, file=sys.stderr)
- if __name__ == '__main__':
- main()
|