openai.md 34 KB


outline: deep

OpenAI-Compatible API Server

This page assumes you've already installed Aphrodite and know how to launch the OpenAI-Compatible server.

:::info This page is quite large and extensive; please use the table of contents ("On this page" to the top left) to navigate. :::

API Reference

Please see the OpenAI API Reference for more information on the API scheme, as we support all parameters, except:

  • in /v1/chat/completions: tools and tool_choice
  • in /v1/completions: suffix

Otherwise, we support everything, plus many other parameters.

Aphrodite also provides experimental support for the OpenAI Vision API.

Extra Parameters

If using the openai python library, you cannot pass extra parameters such as min_p, guided_choice, etc. Thankfully, the library allows you to extend the body as needed:

completion = client.chat.completions.create(
    model="meta-llama/Meta-Llama-3.1-8B-Instruct",
    messages=[
        {"role": "user", "content": "Classify this sentiment: LLMs are wonderful!"}
    ],
    extra_body={
        "guided_choice": ["positive", "negative"]
    }
)

Extra Parameters for Chat API

Aphrodite supports the following extra parameters that are not supported by OpenAI:

best_of: Optional[int] = None
use_beam_search: Optional[bool] = False
top_k: Optional[int] = -1
min_p: Optional[float] = 0.0
top_a: Optional[float] = 0.0
tfs: Optional[float] = 1.0
eta_cutoff: Optional[float] = 0.0
epsilon_cutoff: Optional[float] = 0.0
typical_p: Optional[float] = 1.0
smoothing_factor: Optional[float] = 0.0
smoothing_curve: Optional[float] = 1.0
repetition_penalty: Optional[float] = 1.0
length_penalty: Optional[float] = 1.0
early_stopping: Optional[bool] = False
ignore_eos: Optional[bool] = False
min_tokens: Optional[int] = 0
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
skip_special_tokens: Optional[bool] = True
spaces_between_special_tokens: Optional[bool] = True
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None

And the following parameters:

echo: Optional[bool] = Field(
    default=False,
    description=(
        "If true, the new message will be prepended with the last message "
        "if they belong to the same role."),
)
add_generation_prompt: Optional[bool] = Field(
    default=True,
    description=
    ("If true, the generation prompt will be added to the chat template. "
        "This is a parameter used by chat template in tokenizer config of the "
        "model."),
)
add_special_tokens: Optional[bool] = Field(
    default=False,
    description=(
        "If true, special tokens (e.g. BOS) will be added to the prompt "
        "on top of what is added by the chat template. "
        "For most models, the chat template takes care of adding the "
        "special tokens so this should be set to False (as is the "
        "default)."),
)
documents: Optional[List[Dict[str, str]]] = Field(
    default=None,
    description=
    ("A list of dicts representing documents that will be accessible to "
        "the model if it is performing RAG (retrieval-augmented generation)."
        " If the template does not support RAG, this argument will have no "
        "effect. We recommend that each document should be a dict containing "
        "\"title\" and \"text\" keys."),
)
chat_template: Optional[str] = Field(
    default=None,
    description=(
        "A Jinja template to use for this conversion. "
        "If this is not passed, the model's default chat template will be "
        "used instead."),
)
chat_template_kwargs: Optional[Dict[str, Any]] = Field(
    default=None,
    description=("Additional kwargs to pass to the template renderer. "
                    "Will be accessible by the chat template."),
)
include_stop_str_in_output: Optional[bool] = Field(
    default=False,
    description=(
        "Whether to include the stop string in the output. "
        "This is only applied when the stop or stop_token_ids is set."),
)
guided_json: Optional[Union[str, dict, BaseModel]] = Field(
    default=None,
    description=("If specified, the output will follow the JSON schema."),
)
guided_regex: Optional[str] = Field(
    default=None,
    description=(
        "If specified, the output will follow the regex pattern."),
)
guided_choice: Optional[List[str]] = Field(
    default=None,
    description=(
        "If specified, the output will be exactly one of the choices."),
)
guided_grammar: Optional[str] = Field(
    default=None,
    description=(
        "If specified, the output will follow the context free grammar."),
)
guided_decoding_backend: Optional[str] = Field(
    default=None,
    description=(
        "If specified, will override the default guided decoding backend "
        "of the server for this specific request. If set, must be either "
        "'outlines' / 'lm-format-enforcer'"))
guided_whitespace_pattern: Optional[str] = Field(
    default=None,
    description=(
        "If specified, will override the default whitespace pattern "
        "for guided json decoding."))

Extra Parameters for Text Completions API

Aphrodite supports the following extra parameters that are not supported by OpenAI:

use_beam_search: Optional[bool] = False
top_k: Optional[int] = -1
min_p: Optional[float] = 0.0
top_a: Optional[float] = 0.0
tfs: Optional[float] = 1.0
eta_cutoff: Optional[float] = 0.0
epsilon_cutoff: Optional[float] = 0.0
typical_p: Optional[float] = 1.0
smoothing_factor: Optional[float] = 0.0
smoothing_curve: Optional[float] = 1.0
repetition_penalty: Optional[float] = 1.0
length_penalty: Optional[float] = 1.0
early_stopping: Optional[bool] = False
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
ignore_eos: Optional[bool] = False
min_tokens: Optional[int] = 0
skip_special_tokens: Optional[bool] = True
spaces_between_special_tokens: Optional[bool] = True
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
allowed_token_ids: Optional[List[int]] = None
include_stop_str_in_output: Optional[bool] = False
add_special_tokens: Optional[bool] = False

And the following parameters:

response_format: Optional[ResponseFormat] = Field(
    default=None,
    description=
    ("Similar to chat completion, this parameter specifies the format of "
        "output. Only {'type': 'json_object'} or {'type': 'text' } is "
        "supported."),
)
guided_json: Optional[Union[str, dict, BaseModel]] = Field(
    default=None,
    description=("If specified, the output will follow the JSON schema."),
)
guided_regex: Optional[str] = Field(
    default=None,
    description=(
        "If specified, the output will follow the regex pattern."),
)
guided_choice: Optional[List[str]] = Field(
    default=None,
    description=(
        "If specified, the output will be exactly one of the choices."),
)
guided_grammar: Optional[str] = Field(
    default=None,
    description=(
        "If specified, the output will follow the context free grammar."),
)
guided_decoding_backend: Optional[str] = Field(
    default=None,
    description=(
        "If specified, will override the default guided decoding backend "
        "of the server for this specific request. If set, must be one of "
        "'outlines' / 'lm-format-enforcer'"))
guided_whitespace_pattern: Optional[str] = Field(
    default=None,
    description=(
        "If specified, will override the default whitespace pattern "
        "for guided json decoding."))

Chat Template

In order for the LLM to support chat completions protocol, Aphrodite requires the model to include a chat template in its tokenizer config. The chat template is Jinja2 template file that specifies how roles, messages, and other chat-specific tokens are encoded in the input.

Most modern LLMs provide this if they're an Instruct/Chat finetune, but sometimes they may not. For those models, you can manually specify their chat template in the --chat-template (or - chat_template in the YAML) with the path being the URL or local disk path. You may also provide it as in-line string to the argument. Without a chat template, the server will only launch text completions.

Aphrodite provides a set of chat templates, which you can view here.

Command-line arguments for the server

usage: aphrodite run <model_tag> [options]

positional arguments:
  model_tag             The model tag to serve

options:
  -h, --help            show this help message and exit
  --host HOST           host name
  --port PORT           port number
  --uvicorn-log-level {debug,info,warning,error,critical,trace}
                        log level for uvicorn
  --allow-credentials   allow credentials
  --allowed-origins ALLOWED_ORIGINS
                        allowed origins
  --allowed-methods ALLOWED_METHODS
                        allowed methods
  --allowed-headers ALLOWED_HEADERS
                        allowed headers
  --api-keys API_KEYS   If provided, the server will require this key to be
                        presented in the header.
  --admin-key ADMIN_KEY
                        If provided, the server will require this key to be
                        presented in the header for admin operations.
  --lora-modules LORA_MODULES [LORA_MODULES ...]
                        LoRA module configurations in the format name=path.
                        Multiple modules can be specified.
  --prompt-adapters PROMPT_ADAPTERS [PROMPT_ADAPTERS ...]
                        Prompt adapter configurations in the format name=path.
                        Multiple adapters can be specified.
  --chat-template CHAT_TEMPLATE
                        The file path to the chat template, or the template in
                        single-line form for the specified model
  --response-role RESPONSE_ROLE
                        The role name to return if
                        `request.add_generation_prompt=true`.
  --ssl-keyfile SSL_KEYFILE
                        The file path to the SSL key file
  --ssl-certfile SSL_CERTFILE
                        The file path to the SSL cert file
  --ssl-ca-certs SSL_CA_CERTS
                        The CA certificates file
  --ssl-cert-reqs SSL_CERT_REQS
                        Whether client certificate is required (see stdlib ssl
                        module's)
  --root-path ROOT_PATH
                        FastAPI root_path when app is behind a path based
                        routing proxy
  --middleware MIDDLEWARE
                        Additional ASGI middleware to apply to the app. We
                        accept multiple --middleware arguments. The value
                        should be an import path. If a function is provided,
                        Aphrodite will add it to the server using
                        @app.middleware('http'). If a class is provided,
                        Aphrodite will add it to the server using
                        app.add_middleware().
  --launch-kobold-api   Launch the Kobold API server alongside the OpenAI
                        server
  --max-log-len MAX_LOG_LEN
                        Max number of prompt characters or prompt ID numbers
                        being printed in log. Default: 0
  --return-tokens-as-token-ids
                        When --max-logprobs is specified, represents single
                        tokens asstrings of the form 'token_id:{token_id}' so
                        that tokens thatare not JSON-encodable can be
                        identified.
  --disable-frontend-multiprocessing
                        If specified, will run the OpenAI frontend server in
                        the same process as the model serving engine.
  --model MODEL         Category: Model Options name or path of the
                        huggingface model to use
  --seed SEED           Category: Model Options random seed
  --served-model-name SERVED_MODEL_NAME [SERVED_MODEL_NAME ...]
                        Category: API Options The model name(s) used in the
                        API. If multiple names are provided, the server will
                        respond to any of the provided names. The model name
                        in the model field of a response will be the first
                        name in this list. If not specified, the model name
                        will be the same as the `--model` argument. Noted that
                        this name(s)will also be used in `model_name` tag
                        content of prometheus metrics, if multiple names
                        provided, metricstag will take the first one.
  --tokenizer TOKENIZER
                        Category: Model Options name or path of the
                        huggingface tokenizer to use
  --revision REVISION   Category: Model Options the specific model version to
                        use. It can be a branch name, a tag name, or a commit
                        id. If unspecified, will use the default version.
  --code-revision CODE_REVISION
                        Category: Model Options the specific revision to use
                        for the model code on Hugging Face Hub. It can be a
                        branch name, a tag name, or a commit id. If
                        unspecified, will use the default version.
  --tokenizer-revision TOKENIZER_REVISION
                        Category: Model Options the specific tokenizer version
                        to use. It can be a branch name, a tag name, or a
                        commit id. If unspecified, will use the default
                        version.
  --tokenizer-mode {auto,slow}
                        Category: Model Options tokenizer mode. "auto" will
                        use the fast tokenizer if available, and "slow" will
                        always use the slow tokenizer.
  --trust-remote-code   Category: Model Options trust remote code from
                        huggingface
  --download-dir DOWNLOAD_DIR
                        Category: Model Options directory to download and load
                        the weights, default to the default cache dir of
                        huggingface
  --max-model-len MAX_MODEL_LEN
                        Category: Model Options model context length. If
                        unspecified, will be automatically derived from the
                        model.
  --max-context-len-to-capture MAX_CONTEXT_LEN_TO_CAPTURE
                        Category: Model Options Maximum context length covered
                        by CUDA graphs. When a sequence has context length
                        larger than this, we fall back to eager mode.
                        (DEPRECATED. Use --max-seq_len-to-capture instead)
  --max-seq_len-to-capture MAX_SEQ_LEN_TO_CAPTURE
                        Category: Model Options Maximum sequence length
                        covered by CUDA graphs. When a sequence has context
                        length larger than this, we fall back to eager mode.
  --rope-scaling ROPE_SCALING
                        Category: Model Options RoPE scaling configuration in
                        JSON format. For example,
                        {"type":"dynamic","factor":2.0}
  --rope-theta ROPE_THETA
                        Category: Model Options RoPE theta. Use with
                        `rope_scaling`. In some cases, changing the RoPE theta
                        improves the performance of the scaled model.
  --model-loader-extra-config MODEL_LOADER_EXTRA_CONFIG
                        Category: Model Options Extra config for model loader.
                        This will be passed to the model loader corresponding
                        to the chosen load_format. This should be a JSON
                        string that will be parsed into a dictionary.
  --enforce-eager [ENFORCE_EAGER]
                        Category: Model Options Always use eager-mode PyTorch.
                        If False, will use eager mode and CUDA graph in hybrid
                        for maximal performance and flexibility.
  --skip-tokenizer-init
                        Category: Model Options Skip initialization of
                        tokenizer and detokenizer
  --tokenizer-pool-size TOKENIZER_POOL_SIZE
                        Category: Model Options Size of tokenizer pool to use
                        for asynchronous tokenization. If 0, will use
                        synchronous tokenization.
  --tokenizer-pool-type TOKENIZER_POOL_TYPE
                        Category: Model Options The type of tokenizer pool to
                        use for asynchronous tokenization. Ignored if
                        tokenizer_pool_size is 0.
  --tokenizer-pool-extra-config TOKENIZER_POOL_EXTRA_CONFIG
                        Category: Model Options Extra config for tokenizer
                        pool. This should be a JSON string that will be parsed
                        into a dictionary. Ignored if tokenizer_pool_size is
                        0.
  --max-logprobs MAX_LOGPROBS
                        Category: Model Options maximum number of log
                        probabilities to return.
  --device {auto,cuda,neuron,cpu,openvino,tpu,xpu}
                        Category: Model Options Device to use for model
                        execution.
  --load-format {auto,pt,safetensors,npcache,dummy,tensorizer,sharded_state,bitsandbytes}
                        Category: Model Options The format of the model
                        weights to load. * "auto" will try to load the weights
                        in the safetensors format and fall back to the pytorch
                        bin format if safetensors format is not available. *
                        "pt" will load the weights in the pytorch bin format.
                        * "safetensors" will load the weights in the
                        safetensors format. * "npcache" will load the weights
                        in pytorch format and store a numpy cache to speed up
                        the loading. * "dummy" will initialize the weights
                        with random values, which is mainly for profiling. *
                        "tensorizer" will load the weights using tensorizer
                        from CoreWeave. See the Tensorize Aphrodite Model
                        script in the Examples section for more information. *
                        "bitsandbytes" will load the weights using
                        bitsandbytes quantization.
  --dtype {auto,half,float16,bfloat16,float,float32}
                        Category: Model Options Data type for model weights
                        and activations. * "auto" will use FP16 precision for
                        FP32 and FP16 models, and BF16 precision for BF16
                        models. * "half" for FP16. Recommended for AWQ
                        quantization. * "float16" is the same as "half". *
                        "bfloat16" for a balance between precision and range.
                        * "float" is shorthand for FP32 precision. * "float32"
                        for FP32 precision.
  --ignore-patterns IGNORE_PATTERNS
                        Category: Model Options The pattern(s) to ignore when
                        loading the model.Defaults to 'original/**/*' to avoid
                        repeated loading of llama's checkpoints.
  --worker-use-ray      Category: Parallel Options Deprecated, use
                        --distributed-executor-backend=ray.
  --tensor-parallel-size TENSOR_PARALLEL_SIZE, -tp TENSOR_PARALLEL_SIZE
                        Category: Parallel Options number of tensor parallel
                        replicas, i.e. the number of GPUs to use.
  --pipeline-parallel-size PIPELINE_PARALLEL_SIZE, -pp PIPELINE_PARALLEL_SIZE
                        Category: Parallel Options number of pipeline stages.
                        Currently not supported.
  --ray-workers-use-nsight
                        Category: Parallel Options If specified, use nsight to
                        profile ray workers
  --disable-custom-all-reduce
                        Category: Model Options See ParallelConfig
  --distributed-executor-backend {ray,mp}
                        Category: Parallel Options Backend to use for
                        distributed serving. When more than 1 GPU is used,
                        will be automatically set to "ray" if installed or
                        "mp" (multiprocessing) otherwise.
  --max-parallel-loading-workers MAX_PARALLEL_LOADING_WORKERS
                        Category: Parallel Options load model sequentially in
                        multiple batches, to avoid RAM OOM when using tensor
                        parallel and large models
  --quantization {aqlm,awq,deepspeedfp,eetq,fp8,fbgemm_fp8,gguf,marlin,gptq_marlin_24,gptq_marlin,awq_marlin,gptq,quip,squeezellm,compressed-tensors,bitsandbytes,qqq,None}, -q {aqlm,awq,deepspeedfp,eetq,fp8,fbgemm_fp8,gguf,marlin,gptq_marlin_24,gptq_marlin,awq_marlin,gptq,quip,squeezellm,compressed-tensors,bitsandbytes,qqq,None}
                        Category: Quantization Options Method used to quantize
                        the weights. If None, we first check the
                        `quantization_config` attribute in the model config
                        file. If that is None, we assume the model weights are
                        not quantized and use `dtype` to determine the data
                        type of the weights.
  --quantization-param-path QUANTIZATION_PARAM_PATH
                        Category: Quantization Options Path to the JSON file
                        containing the KV cache scaling factors. This should
                        generally be supplied, when KV cache dtype is FP8.
                        Otherwise, KV cache scaling factors default to 1.0,
                        which may cause accuracy issues. FP8_E5M2 (without
                        scaling) is only supported on cuda versiongreater than
                        11.8. On ROCm (AMD GPU), FP8_E4M3 is instead supported
                        for common inference criteria.
  --preemption-mode PREEMPTION_MODE
                        Category: Scheduler Options If 'recompute', the engine
                        performs preemption by block swapping; If 'swap', the
                        engine performs preemption by block swapping.
  --deepspeed-fp-bits DEEPSPEED_FP_BITS
                        Category: Quantization Options Number of floating bits
                        to use for the deepseed quantization. Supported bits
                        are: 4, 6, 8, 12.
  --kv-cache-dtype {auto,fp8,fp8_e5m2,fp8_e4m3}
                        Category: Cache Options Data type for kv cache
                        storage. If "auto", will use model data type. CUDA
                        11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. ROCm (AMD
                        GPU) supports fp8 (=fp8_e4m3)
  --block-size {8,16,32}
                        Category: Cache Options token block size
  --enable-prefix-caching, --context-shift
                        Category: Cache Options Enable automatic prefix
                        caching.
  --num-gpu-blocks-override NUM_GPU_BLOCKS_OVERRIDE
                        Category: Cache Options Options If specified, ignore
                        GPU profiling result and use this number of GPU
                        blocks. Used for testing preemption.
  --disable-sliding-window
                        Category: KV Cache Options Disables sliding window,
                        capping to sliding window size
  --gpu-memory-utilization GPU_MEMORY_UTILIZATION, -gmu GPU_MEMORY_UTILIZATION
                        Category: Cache Options The fraction of GPU memory to
                        be used for the model executor, which can range from 0
                        to 1.If unspecified, will use the default value of
                        0.9.
  --swap-space SWAP_SPACE
                        Category: Cache Options CPU swap space size (GiB) per
                        GPU
  --cpu-offload-gb CPU_OFFLOAD_GB
                        Category: Cache Options The space in GiB to offload to
                        CPU, per GPU. Default is 0, which means no offloading.
                        Intuitively, this argument can be seen as a virtual
                        way to increase the GPU memory size. For example, if
                        you have one 24 GB GPU and set this to 10, virtually
                        you can think of it as a 34 GB GPU. Then you can load
                        a 13B model with BF16 weight,which requires at least
                        26GB GPU memory. Note that this requires fast CPU-GPU
                        interconnect, as part of the model isloaded from CPU
                        memory to GPU memory on the fly in each model forward
                        pass.
  --use-v2-block-manager
                        Category: Scheduler Options Use the v2 block manager.
  --scheduler-delay-factor SCHEDULER_DELAY_FACTOR, -sdf SCHEDULER_DELAY_FACTOR
                        Category: Scheduler Options Apply a delay (of delay
                        factor multiplied by previous prompt latency) before
                        scheduling next prompt.
  --enable-chunked-prefill [ENABLE_CHUNKED_PREFILL]
                        Category: Scheduler Options If True, the prefill
                        requests can be chunked based on the
                        max_num_batched_tokens.
  --guided-decoding-backend {outlines,lm-format-enforcer}
                        Category: Scheduler Options Which engine will be used
                        for guided decoding (JSON schema / regex etc) by
                        default. Currently support
                        https://github.com/outlines-dev/outlines and
                        https://github.com/noamgat/lm-format-enforcer. Can be
                        overridden per request via guided_decoding_backend
                        parameter.
  --max-num-batched-tokens MAX_NUM_BATCHED_TOKENS
                        Category: KV Cache Options maximum number of batched
                        tokens per iteration
  --max-num-seqs MAX_NUM_SEQS
                        Category: API Options maximum number of sequences per
                        iteration
  --num-lookahead-slots NUM_LOOKAHEAD_SLOTS
                        Category: Speculative Decoding Options Experimental
                        scheduling config necessary for speculative decoding.
                        This will be replaced by speculative decoding config
                        in the future; it is present for testing purposes
                        until then.
  --speculative-model SPECULATIVE_MODEL
                        Category: Speculative Decoding Options The name of the
                        draft model to be used in speculative decoding.
  --num-speculative-tokens NUM_SPECULATIVE_TOKENS
                        Category: Speculative Decoding Options The number of
                        speculative tokens to sample from the draft model in
                        speculative decoding
  --speculative-max-model-len SPECULATIVE_MAX_MODEL_LEN
                        Category: Speculative Decoding Options The maximum
                        sequence length supported by the draft model.
                        Sequences over this length will skip speculation.
  --ngram-prompt-lookup-max NGRAM_PROMPT_LOOKUP_MAX
                        Category: Speculative Decoding Options Max size of
                        window for ngram prompt lookup in speculative
                        decoding.
  --ngram-prompt-lookup-min NGRAM_PROMPT_LOOKUP_MIN
                        Category: Speculative Decoding Options Min size of
                        window for ngram prompt lookup in speculative
                        decoding.
  --speculative-draft-tensor-parallel-size SPECULATIVE_DRAFT_TENSOR_PARALLEL_SIZE, -spec-draft-tp SPECULATIVE_DRAFT_TENSOR_PARALLEL_SIZE
                        Category: Speculative Decoding Options Number of
                        tensor parallel replicas for the draft model in
                        speculative decoding.
  --speculative-disable-by-batch-size SPECULATIVE_DISABLE_BY_BATCH_SIZE
                        Category: Speculative Decoding Options Disable
                        speculative decoding for new incoming requests if the
                        number of enqueue requests is larger than this value.
  --spec-decoding-acceptance-method {rejection_sampler,typical_acceptance_sampler}
                        Category: Speculative Decoding Options Specify the
                        acceptance method to use during draft token
                        verification in speculative decoding. Two types of
                        acceptance routines are supported: 1) RejectionSampler
                        which does not allow changing the acceptance rate of
                        draft tokens, 2) TypicalAcceptanceSampler which is
                        configurable, allowing for a higher acceptance rate at
                        the cost of lower quality, and vice versa.
  --typical-acceptance-sampler-posterior-threshold TYPICAL_ACCEPTANCE_SAMPLER_POSTERIOR_THRESHOLD
                        Category: Speculative Decoding Options Set the lower
                        bound threshold for the posterior probability of a
                        token to be accepted. This threshold is used by the
                        TypicalAcceptanceSampler to make sampling decisions
                        during speculative decoding. Defaults to 0.09
  --typical-acceptance-sampler-posterior-alpha TYPICAL_ACCEPTANCE_SAMPLER_POSTERIOR_ALPHA
                        Category: Speculative Decoding Options A scaling
                        factor for the entropy-based threshold for token
                        acceptance in the TypicalAcceptanceSampler. Typically
                        defaults to sqrt of --typical-acceptance-sampler-
                        posterior-threshold i.e. 0.3
  --disable-logprobs-during-spec-decoding DISABLE_LOGPROBS_DURING_SPEC_DECODING
                        Category: Speculative Decoding Options If set to True,
                        token log probabilities are not returned during
                        speculative decoding. If set to False, log
                        probabilities are returned according to the settings
                        in SamplingParams. If not specified, it defaults to
                        True. Disabling log probabilities during speculative
                        decoding reduces latency by skipping logprob
                        calculation in proposal sampling, target sampling, and
                        after accepted tokens are determined.
  --enable-lora         Category: Adapter Options If True, enable handling of
                        LoRA adapters.
  --max-loras MAX_LORAS
                        Category: Adapter Options Max number of LoRAs in a
                        single batch.
  --max-lora-rank MAX_LORA_RANK
                        Category: Adapter Options Max LoRA rank.
  --lora-extra-vocab-size LORA_EXTRA_VOCAB_SIZE
                        Category: Adapter Options Maximum size of extra
                        vocabulary that can be present in a LoRA adapter
                        (added to the base model vocabulary).
  --lora-dtype {auto,float16,bfloat16,float32}
                        Category: Adapter Options Data type for LoRA. If auto,
                        will default to base model dtype.
  --max-cpu-loras MAX_CPU_LORAS
                        Category: Adapter Options Maximum number of LoRAs to
                        store in CPU memory. Must be >= than max_num_seqs.
                        Defaults to max_num_seqs.
  --long-lora-scaling-factors LONG_LORA_SCALING_FACTORS
                        Category: Adapter Options Specify multiple scaling
                        factors (which can be different from base model
                        scaling factor - see eg. Long LoRA) to allow for
                        multiple LoRA adapters trained with those scaling
                        factors to be used at the same time. If not specified,
                        only adapters trained with the base model scaling
                        factor are allowed.
  --fully-sharded-loras
                        Category: Adapter Options By default, only half of the
                        LoRA computation is sharded with tensor parallelism.
                        Enabling this will use the fully sharded layers. At
                        high sequence length, max rank or tensor parallel
                        size, this is likely faster.
  --qlora-adapter-name-or-path QLORA_ADAPTER_NAME_OR_PATH
                        Category: Adapter Options Name or path of the LoRA
                        adapter to use.
  --enable-prompt-adapter
                        Category: Adapter Options If True, enable handling of
                        PromptAdapters.
  --max-prompt-adapters MAX_PROMPT_ADAPTERS
                        Category: Adapter Options Max number of PromptAdapters
                        in a batch.
  --max-prompt-adapter-token MAX_PROMPT_ADAPTER_TOKEN
                        Category: Adapter Options Max number of PromptAdapters
                        tokens
  --disable-log-stats   Category: Log Options disable logging statistics
  --engine-use-ray      Use Ray to start the LLM engine in a separate process
                        as the server process.
  --disable-log-requests
                        Disable logging requests.
  --uvloop              Use the Uvloop asyncio event loop to possibly increase
                        performance

Tool Calling in the chat completions API

Aphrodite supports only named function calling in the chat completions API. The tool_choice options auto and required are not yet supported but on the development roadmap.

To use a named function, you need to define the function in the tools parameter and call it in the tools_choice parameter. It's the caller's responsibility to prompt the model with the tool info; Aphrodite will not automatically manipulate the prompt. This may change in the future!

Aphrodite will use guided decoding to ensure the response matches the tool parameter object defined by the JSON schema in the tools parameter. Please refer to the OpenAI API reference for more info.