123456789101112131415161718192021222324252627282930 |
- from typing import List, Optional, Tuple
- import torch
- from aphrodite.scalar_type import ScalarType, scalar_types
- MACHETE_SUPPORTED_GROUP_SIZES = [-1, 128]
- MACHETE_PREPACKED_BLOCK_SHAPE = [64, 128]
- def query_machete_supported_quant_types(zero_points: bool) -> List[ScalarType]:
- if zero_points:
- return [scalar_types.uint4, scalar_types.uint8]
- else:
- return [scalar_types.uint4b8, scalar_types.uint8b128]
- def query_machete_supported_act_types(zero_points: bool) -> List[ScalarType]:
- return [torch.float16, torch.bfloat16]
- def check_machete_supports_shape(in_features: int, out_featrues: int) \
- -> Tuple[bool, Optional[str]]:
- if in_features % MACHETE_PREPACKED_BLOCK_SHAPE[0] != 0:
- return False, "Input features size must be divisible by "\
- f"{MACHETE_PREPACKED_BLOCK_SHAPE[0]}"
- if out_featrues % MACHETE_PREPACKED_BLOCK_SHAPE[1] != 0:
- return False, "Output features size must be divisible by "\
- f"{MACHETE_PREPACKED_BLOCK_SHAPE[1]}"
- return True, None
|