123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- from typing import Any, Dict, List, Optional
- import torch
- from torch.nn.parameter import Parameter
- from aphrodite import _custom_ops as ops
- from aphrodite.common.utils import is_hip
- from aphrodite.modeling.layers.linear import LinearBase
- from aphrodite.modeling.utils import set_weight_attrs
- from aphrodite.quantization.base_config import (QuantizationConfig,
- QuantizeMethodBase)
- class SqueezeLLMConfig(QuantizationConfig):
- """Config class for SqueezeLLM.
- Reference: https://arxiv.org/pdf/2306.07629
- """
- def __init__(
- self,
- weight_bits: int,
- ) -> None:
- self.weight_bits = weight_bits
- if self.weight_bits != 4:
- raise ValueError(
- "Currently, only 4-bit weight quantization is supported for "
- f"SqueezeLLM, but got {self.weight_bits} bits.")
- self.pack_factor = 32 // self.weight_bits
- def __repr__(self) -> str:
- return f"SqueezeLLMConfig(weight_bits={self.weight_bits})"
- def get_name(self) -> str:
- return "squeezellm"
- def get_supported_act_dtypes(self) -> List[torch.dtype]:
- return [torch.half]
- @classmethod
- def get_min_capability(cls) -> int:
- return 70
- @staticmethod
- def get_config_filenames() -> List[str]:
- return ["quant_config.json"]
- @classmethod
- def from_config(cls, config: Dict[str, Any]) -> "SqueezeLLMConfig":
- weight_bits = cls.get_from_keys(config, ["wbits"])
- return cls(weight_bits)
- def get_quant_method(self, layer: torch.nn.Module,
- prefix: str) -> Optional[QuantizeMethodBase]:
- if isinstance(layer, LinearBase):
- return SqueezeLLMLinearMethod(self)
- return
- def get_scaled_act_names(self) -> List[str]:
- return []
- class SqueezeLLMLinearMethod(QuantizeMethodBase):
- """Linear method for SqueezeLLM.
- Args:
- quant_config: The SqueezeLLM quantization config.
- """
- def __init__(self, quant_config: SqueezeLLMConfig):
- self.quant_config = quant_config
- def create_weights(self, layer: torch.nn.Module,
- input_size_per_partition: int,
- output_partition_sizes: List[int], input_size: int,
- output_size: int, params_dtype: torch.dtype,
- **extra_weight_attrs):
- if input_size_per_partition % self.quant_config.pack_factor != 0:
- raise ValueError(
- "The input size is not aligned with the quantized "
- "weight shape. This can be caused by too large "
- "tensor parallel size.")
- output_size_per_partition = sum(output_partition_sizes)
- qweight = Parameter(
- torch.empty(
- input_size_per_partition // self.quant_config.pack_factor,
- output_size_per_partition,
- dtype=torch.int32,
- ),
- requires_grad=False,
- )
- set_weight_attrs(
- qweight, {
- "input_dim": 0,
- "output_dim": 1,
- "packed_dim": 0,
- "pack_factor": self.quant_config.pack_factor,
- })
- lookup_table = Parameter(
- torch.empty(
- output_size,
- self.quant_config.weight_bits**2,
- dtype=params_dtype,
- ),
- requires_grad=False,
- )
- set_weight_attrs(lookup_table, {
- "output_dim": 0,
- })
- layer.register_parameter("qweight", qweight)
- set_weight_attrs(qweight, extra_weight_attrs)
- layer.register_parameter("lookup_table", lookup_table)
- set_weight_attrs(lookup_table, extra_weight_attrs)
- def apply(self,
- layer: torch.nn.Module,
- x: torch.Tensor,
- bias: Optional[torch.Tensor] = None) -> torch.Tensor:
- qweight = layer.qweight
- lookup_table = layer.lookup_table
- out_shape = x.shape[:-1] + (qweight.shape[-1], )
- reshaped_x = x.reshape(-1, x.shape[-1])
- if is_hip():
- out_f = torch.zeros(out_shape, dtype=torch.float)
- ops.squeezellm_gemm(reshaped_x, qweight, out_f, lookup_table)
- out = out_f.to(dtype=torch.float16)
- else:
- # NOTE: The output tensor should be zero-initialized.
- out = torch.zeros(out_shape, dtype=torch.float16)
- ops.squeezellm_gemm(reshaped_x, qweight, out, lookup_table)
- if bias is not None:
- out.add_(bias)
- return out.reshape(out_shape)
|