123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265 |
- from typing import Any, Dict, List, Optional
- import torch
- from torch.nn.parameter import Parameter
- from aphrodite import _custom_ops as ops
- from aphrodite.modeling.layers.linear import LinearBase, LinearMethodBase
- from aphrodite.modeling.parameter import (BaseAphroditeParameter,
- ChannelQuantScaleParameter,
- GroupQuantScaleParameter,
- PackedAphroditeParameter)
- from aphrodite.quantization.base_config import QuantizationConfig
- MARLIN_QQQ_TILE = 16
- MARLIN_QQQ_MIN_THREAD_N = 64
- MARLIN_QQQ_MIN_THREAD_K = 128
- MARLIN_QQQ_MAX_PARALLEL = 16
- MARLIN_QQQ_SUPPORTED_NUM_BITS = [4]
- MARLIN_QQQ_SUPPORTED_GROUP_SIZES = [-1, 128]
- MARLIN_QQQ_SUPPORTED_SYM = [True]
- class QQQConfig(QuantizationConfig):
- """Config class for QQQ
-
- Reference: https://arxiv.org/pdf/2406.09904
- """
- def __init__(
- self,
- weight_bits: int,
- group_size: int,
- is_sym: bool = True,
- ) -> None:
- self.weight_bits = weight_bits
- self.group_size = group_size
- self.is_sym = is_sym
- # Verify
- if self.weight_bits not in MARLIN_QQQ_SUPPORTED_NUM_BITS:
- raise ValueError(
- f"QQQ does not support weight_bits = {self.weight_bits}. "
- f"Only weight_bits = {MARLIN_QQQ_SUPPORTED_NUM_BITS} "
- "are supported.")
- if self.group_size not in MARLIN_QQQ_SUPPORTED_GROUP_SIZES:
- raise ValueError(
- f"QQQ does not support group_size = {self.group_size}. "
- f"Only group_sizes = {MARLIN_QQQ_SUPPORTED_GROUP_SIZES} "
- "are supported.")
- if self.is_sym not in MARLIN_QQQ_SUPPORTED_SYM:
- raise ValueError(
- f"QQQ does not support is_sym = {self.is_sym}. "
- f"Only sym = {MARLIN_QQQ_SUPPORTED_SYM} are supported.")
- # 4 Bits packed into 32 bit datatype.
- self.pack_factor = 32 // self.weight_bits
- # Tile size used by QQQ kernels.
- self.tile_size = MARLIN_QQQ_TILE
- # Min out_features dim
- self.min_n_threads = MARLIN_QQQ_MIN_THREAD_N
- # Min in_features dim
- self.min_k_threads = MARLIN_QQQ_MIN_THREAD_K
- # Max parallel problems to solve at once (improves large
- # batch performance)
- self.max_parallel = MARLIN_QQQ_MAX_PARALLEL
- # Permutation length used by the QQQ kernels.
- self.perm_len = 1024
- def __repr__(self) -> str:
- return "QQQConfig(weight_bits={}, group_size={})".format(
- self.weight_bits, self.group_size)
- @classmethod
- def get_name(cls) -> str:
- return "qqq"
- @classmethod
- def get_supported_act_dtypes(cls) -> List[torch.dtype]:
- return [torch.half]
- @classmethod
- def get_min_capability(cls) -> int:
- return 80
- @classmethod
- def get_config_filenames(cls) -> List[str]:
- """List of filenames to search for in the model directory."""
- return [
- "quant_config.json",
- "quantize_config.json",
- ]
- @classmethod
- def from_config(cls, config: Dict[str, Any]) -> "QQQConfig":
- weight_bits = cls.get_from_keys(config, ["wbits"])
- group_size = cls.get_from_keys(config, ["group_size"])
- return cls(weight_bits, group_size)
- def get_quant_method(self, layer: torch.nn.Module,
- prefix: str) -> Optional["QQQLinearMethod"]:
- if isinstance(layer, LinearBase):
- return QQQLinearMethod(self)
- return None
- def get_scaled_act_names(self) -> List[str]:
- return []
- class QQQLinearMethod(LinearMethodBase):
- """Linear method for QQQ.
- Args:
- quant_config: The QQQ quantization config.
- """
- def __init__(self, quant_config: QQQConfig):
- self.quant_config = quant_config
- def create_weights(
- self,
- layer: torch.nn.Module,
- input_size_per_partition: int,
- output_partition_sizes: List[int],
- input_size: int,
- output_size: int,
- params_dtype: torch.dtype,
- **extra_weight_attrs,
- ):
- weight_loader = extra_weight_attrs["weight_loader"]
- if params_dtype != torch.float16:
- raise ValueError(
- f"The params dtype must be float16, but got {params_dtype}")
- # Validate output_size_per_partition
- output_size_per_partition = sum(output_partition_sizes)
- if output_size_per_partition % self.quant_config.min_n_threads != 0:
- raise ValueError(
- f"Weight output_size_per_partition = "
- f"{output_size_per_partition} is not divisible by "
- f"min_n_threads = {self.quant_config.min_n_threads}.")
- if output_size_per_partition % self.quant_config.pack_factor != 0:
- raise ValueError(
- f"Weight output_size_per_partition = "
- f"{output_size_per_partition} is not divisible by "
- f"pack_factor = {self.quant_config.pack_factor}.")
- # Validate input_size_per_partition
- if input_size_per_partition % self.quant_config.min_k_threads != 0:
- raise ValueError(
- f"Weight input_size_per_partition = "
- f"{input_size_per_partition} is not divisible by "
- f"min_k_threads = {self.quant_config.min_k_threads}.")
- if (self.quant_config.group_size != -1 and
- input_size_per_partition % self.quant_config.group_size != 0):
- raise ValueError(f"Weight input_size_per_partition = "
- f"{input_size_per_partition} is not divisible by "
- f"group_size = {self.quant_config.group_size}.")
- # Check that we have at least 4 tiles horizontally in the shard
- num_tiles_per_perm = self.quant_config.perm_len // (
- self.quant_config.tile_size**2)
- if output_size_per_partition % num_tiles_per_perm != 0:
- raise ValueError(
- "Each permutation group must reside on the same gpu")
- # Quantized 4Bit weights packed into Int32.
- qweight = PackedAphroditeParameter(
- data=torch.empty(
- input_size_per_partition // self.quant_config.tile_size,
- output_size_per_partition * self.quant_config.tile_size //
- self.quant_config.pack_factor,
- device="cuda",
- dtype=torch.int32,
- ),
- input_dim=0,
- output_dim=1,
- packed_dim=1,
- packed_factor=self.quant_config.pack_factor,
- marlin_tile_size=self.quant_config.tile_size,
- weight_loader=weight_loader)
- s_channel = ChannelQuantScaleParameter(data=torch.empty(
- 1,
- output_size_per_partition,
- device="cuda",
- dtype=torch.float,
- ),
- weight_loader=weight_loader,
- output_dim=1)
- if self.quant_config.group_size == -1:
- s_group_data = torch.tensor(
- [],
- device="cuda",
- dtype=torch.half,
- )
- else:
- s_group_data = torch.empty(
- input_size_per_partition // self.quant_config.group_size,
- output_size_per_partition,
- device="cuda",
- dtype=torch.half,
- )
- s_group_attr = {"data": s_group_data, "weight_loader": weight_loader}
- if self.quant_config.group_size == -1:
- s_group = BaseAphroditeParameter(**s_group_attr)
- else:
- s_group = GroupQuantScaleParameter(output_dim=1,
- input_dim=0,
- **s_group_attr)
- # Allocate workspace (Used for internal locking mechanism)
- max_workspace_size = (
- output_size_per_partition //
- self.quant_config.min_n_threads) * self.quant_config.max_parallel
- workspace = BaseAphroditeParameter(data=torch.zeros(max_workspace_size,
- device="cuda",
- dtype=torch.int),
- weight_loader=weight_loader)
- layer.register_parameter("B", qweight)
- layer.register_parameter("s_channel", s_channel)
- layer.register_parameter("s_group", s_group)
- layer.register_parameter("workspace", workspace)
- def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
- # required by torch.compile
- layer.B = Parameter(layer.B.data, requires_grad=False)
- layer.s_channel = Parameter(layer.s_channel.data, requires_grad=False)
- layer.s_group = Parameter(layer.s_group.data, requires_grad=False)
- layer.workspace = Parameter(layer.workspace.data, requires_grad=False)
- def apply(
- self,
- layer: torch.nn.Module,
- x: torch.Tensor,
- bias: Optional[torch.Tensor] = None,
- ) -> torch.Tensor:
- qweight = layer.B
- s_ch = layer.s_channel
- s_group = layer.s_group
- workspace = layer.workspace
- x_2d = x.view(-1, x.shape[-1])
- size_m = x_2d.shape[0]
- size_k = x_2d.shape[1]
- size_n = s_ch.shape[1]
- x_int8, s_tok, _ = ops.scaled_int8_quant(x_2d)
- output_2d = ops.marlin_qqq_gemm(x_int8, qweight, s_tok, s_ch, s_group,
- workspace, size_m, size_n, size_k)
- output = output_2d.view(x.shape[:-1] + (output_2d.shape[1], ))
- if bias is not None:
- output.add_(bias) # In-place add
- return output
|