123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180 |
- from typing import Any, Dict, List, Optional
- import torch
- from loguru import logger
- from torch.nn import Module
- from torch.nn.parameter import Parameter
- from aphrodite.modeling.layers.linear import LinearBase, LinearMethodBase
- from aphrodite.modeling.parameter import (ModelWeightParameter,
- PerTensorScaleParameter)
- from aphrodite.quantization.base_config import (QuantizationConfig,
- QuantizeMethodBase)
- from aphrodite.quantization.kv_cache import BaseKVCacheMethod
- from aphrodite.quantization.utils.w8a8_utils import (apply_fp8_linear,
- cutlass_fp8_supported,
- requantize_with_max_scale)
- ACTIVATION_SCHEMES = ["static"]
- class ModelOptFp8Config(QuantizationConfig):
- """Config class for ModelOpt FP8."""
- def __init__(
- self,
- is_checkpoint_fp8_serialized: bool = False,
- ) -> None:
- self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized
- if is_checkpoint_fp8_serialized:
- logger.warning(
- "Detected ModelOpt fp8 checkpoint. Please note that"
- " the format is experimental and could change."
- )
- @classmethod
- def get_name(cls) -> str:
- return "modelopt"
- @classmethod
- def get_supported_act_dtypes(cls) -> List[torch.dtype]:
- return [torch.bfloat16, torch.half]
- @classmethod
- def get_min_capability(cls) -> int:
- return 89
- @classmethod
- def get_config_filenames(cls) -> List[str]:
- return ["hf_quant_config.json"]
- @classmethod
- def from_config(cls, config: Dict[str, Any]) -> "ModelOptFp8Config":
- quant_config = cls.get_from_keys(config, ["quantization"])
- quant_method = quant_config["quant_algo"]
- is_checkpoint_fp8_serialized = "FP8" in quant_method
- if not is_checkpoint_fp8_serialized:
- raise ValueError(
- "ModelOpt currently only supports static FP8"
- "quantization in Aphrodite. Please check the "
- "`hf_quant_config.json` file for your model's "
- "quant configuration."
- )
- return cls(is_checkpoint_fp8_serialized)
- def get_quant_method(
- self, layer: torch.nn.Module, prefix: str
- ) -> Optional["QuantizeMethodBase"]:
- from aphrodite.attention.layer import (
- Attention) # Avoid circular import
- if isinstance(layer, LinearBase):
- return ModelOptFp8LinearMethod(self)
- elif isinstance(layer, Attention):
- return ModelOptFp8KVCacheMethod(self)
- return None
- def get_scaled_act_names(self) -> List[str]:
- return []
- class ModelOptFp8KVCacheMethod(BaseKVCacheMethod):
- """
- Supports loading kv-cache scaling factors from FP8 checkpoints.
- """
- def __init__(self, quant_config: ModelOptFp8Config):
- super().__init__(quant_config)
- class ModelOptFp8LinearMethod(LinearMethodBase):
- """Linear method for Model Optimizer static quantization.
- Supports loading FP8 checkpoints with static weight scale and
- activation scale. Future support might be added for dynamic
- scales.
- Limitations:
- 1. Only support per-tensor quantization due to torch._scaled_mm support.
- 2. Only support float8_e4m3fn datatype
- Args: quant_config: The ModelOpt quantization config.
- """
- def __init__(self, quant_config: ModelOptFp8Config):
- self.quant_config = quant_config
- self.cutlass_fp8_supported = cutlass_fp8_supported()
- def create_weights(
- self,
- layer: torch.nn.Module,
- input_size_per_partition: int,
- output_partition_sizes: List[int],
- input_size: int,
- output_size: int,
- params_dtype: torch.dtype,
- **extra_weight_attrs,
- ):
- del input_size, output_size
- output_size_per_partition = sum(output_partition_sizes)
- weight_loader = extra_weight_attrs.get("weight_loader")
- layer.logical_widths = output_partition_sizes
- layer.input_size_per_partition = input_size_per_partition
- layer.output_size_per_partition = output_size_per_partition
- weight_dtype = (
- torch.float8_e4m3fn
- if self.quant_config.is_checkpoint_fp8_serialized
- else params_dtype
- )
- weight = ModelWeightParameter(
- data=torch.empty(
- output_size_per_partition,
- input_size_per_partition,
- dtype=weight_dtype,
- ),
- input_dim=1,
- output_dim=0,
- weight_loader=weight_loader,
- )
- layer.register_parameter("weight", weight)
- if self.quant_config.is_checkpoint_fp8_serialized:
- # WEIGHT SCALE
- weight_scale = PerTensorScaleParameter(
- data=torch.empty(
- len(output_partition_sizes), dtype=torch.float32
- ),
- weight_loader=weight_loader,
- )
- weight_scale[:] = torch.finfo(torch.float32).min
- layer.register_parameter("weight_scale", weight_scale)
- # INPUT SCALE
- scale = PerTensorScaleParameter(
- data=torch.empty(
- len(output_partition_sizes), dtype=torch.float32
- ),
- weight_loader=weight_loader,
- )
- scale[:] = torch.finfo(torch.float32).min
- layer.register_parameter("input_scale", scale)
- def process_weights_after_loading(self, layer: Module) -> None:
- max_w_scale, weight = requantize_with_max_scale(
- layer.weight, layer.weight_scale, layer.logical_widths
- )
- layer.weight = Parameter(weight.t(), requires_grad=False)
- layer.weight_scale = Parameter(max_w_scale, requires_grad=False)
- layer.input_scale = Parameter(
- layer.input_scale.max(), requires_grad=False
- )
- def apply(
- self,
- layer: torch.nn.Module,
- x: torch.Tensor,
- bias: Optional[torch.Tensor] = None,
- ) -> torch.Tensor:
- return apply_fp8_linear(
- input=x,
- weight=layer.weight,
- weight_scale=layer.weight_scale,
- input_scale=layer.input_scale,
- bias=bias,
- cutlass_fp8_supported=self.cutlass_fp8_supported,
- )
|