123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 |
- from typing import Any, Dict, List, Optional
- import torch
- from loguru import logger
- from torch.nn.parameter import Parameter
- from aphrodite import _custom_ops as ops
- from aphrodite.modeling.layers.linear import LinearBase, LinearMethodBase
- from aphrodite.modeling.layers.vocab_parallel_embedding import ParallelLMHead
- from aphrodite.modeling.parameter import (BaseAphroditeParameter,
- ChannelQuantScaleParameter,
- GroupQuantScaleParameter,
- PackedAphroditeParameter)
- from aphrodite.quantization.base_config import QuantizationConfig
- class MarlinConfig(QuantizationConfig):
- """Config class for Marlin.
- Reference: https://github.com/IST-DASLab/marlin/tree/master
- """
- def __init__(
- self,
- group_size: int,
- lm_head_quantized: bool,
- ) -> None:
- # Group size for the quantization.
- self.group_size = group_size
- self.lm_head_quantized = lm_head_quantized
- if self.group_size != 128 and self.group_size != -1:
- raise ValueError(
- "Currently, only group size 128 and -1 (channelwise) "
- "is supported for Marlin, but got group_size of "
- f"{self.group_size}"
- )
- # 4 Bits packed into 32 bit datatype.
- self.pack_factor = 32 // 4
- # Tile size used by marlin kernels.
- self.tile_size = 16
- # Min out_features dim
- self.min_n_threads = 64
- # Min in_features dim
- self.min_k_threads = 128
- # Max parallel problems to solve at once (improves large
- # batch performance)
- self.max_parallel = 16
- # Permutation length used by the marlin kernels.
- self.perm_len = 1024
- def __repr__(self) -> str:
- return (
- f"MarlinConfig(group_size={self.group_size}, "
- f"lm_head_quantized={self.lm_head_quantized})"
- )
- @classmethod
- def get_name(cls) -> str:
- return "marlin"
- @classmethod
- def get_supported_act_dtypes(cls) -> List[torch.dtype]:
- return [torch.half]
- @classmethod
- # Need to figure it out
- def get_min_capability(cls) -> int:
- return 80
- @classmethod
- def get_config_filenames(cls) -> List[str]:
- return ["quantize_config.json"]
- @classmethod
- def from_config(cls, config: Dict[str, Any]) -> "MarlinConfig":
- group_size = cls.get_from_keys(config, ["group_size"])
- lm_head_quantized = cls.get_from_keys_or(
- config, ["lm_head"], default=False
- )
- return cls(group_size, lm_head_quantized)
- @classmethod
- def override_quantization_method(
- cls, hf_quant_cfg, user_quant
- ) -> Optional[str]:
- # compat: autogptq >=0.8.0 use checkpoint_format: str
- # compat: autogptq <=0.7.1 is_marlin_format: bool
- is_marlin_format = hf_quant_cfg.get(
- "checkpoint_format"
- ) == "marlin" or hf_quant_cfg.get("is_marlin_format", False)
- is_valid_user_quant = (
- user_quant is None or user_quant == "gptq" or user_quant == "marlin"
- )
- if is_marlin_format and is_valid_user_quant:
- msg = (
- "The model is serialized in {} format. Using {} kernel.".format(
- cls.get_name(), cls.get_name()
- )
- )
- logger.info(msg)
- return cls.get_name()
- return None
- def get_quant_method(
- self, layer: torch.nn.Module, prefix: str
- ) -> Optional["MarlinLinearMethod"]:
- if isinstance(layer, LinearBase) or (
- isinstance(layer, ParallelLMHead) and self.lm_head_quantized
- ):
- return MarlinLinearMethod(self)
- return None
- def get_scaled_act_names(self) -> List[str]:
- return []
- class MarlinLinearMethod(LinearMethodBase):
- """Linear method for Marlin.
- Args:
- quant_config: The Marlin quantization config.
- """
- def __init__(self, quant_config: MarlinConfig):
- self.quant_config = quant_config
- def create_weights(
- self,
- layer: torch.nn.Module,
- input_size_per_partition: int,
- output_partition_sizes: List[int],
- input_size: int,
- output_size: int,
- params_dtype: torch.dtype,
- **extra_weight_attrs,
- ):
- del output_size # Unused.
- weight_loader = extra_weight_attrs["weight_loader"]
- if params_dtype != torch.float16:
- raise ValueError(
- f"The params dtype must be float16, but got {params_dtype}"
- )
- # Validate output_size_per_partition
- output_size_per_partition = sum(output_partition_sizes)
- if output_size_per_partition % self.quant_config.min_n_threads != 0:
- raise ValueError(
- f"Weight output_size_per_partition = "
- f"{output_size_per_partition} is not divisible by "
- f"min_n_threads = {self.quant_config.min_n_threads}."
- )
- if output_size_per_partition % self.quant_config.pack_factor != 0:
- raise ValueError(
- f"Weight output_size_per_partition = "
- f"{output_size_per_partition} is not divisible by "
- f"pack_factor = {self.quant_config.pack_factor}."
- )
- # Validate input_size_per_partition
- if input_size_per_partition % self.quant_config.min_k_threads != 0:
- raise ValueError(
- f"Weight input_size_per_partition = "
- f"{input_size_per_partition} is not divisible by "
- f"min_k_threads = {self.quant_config.min_k_threads}."
- )
- if (
- self.quant_config.group_size != -1
- and input_size_per_partition % self.quant_config.group_size != 0
- ):
- raise ValueError(
- f"Weight input_size_per_partition = "
- f"{input_size_per_partition} is not divisible by "
- f"group_size = {self.quant_config.group_size}."
- )
- # Check that we have at least 4 tiles horizontally in the shard
- num_tiles_per_perm = self.quant_config.perm_len // (
- self.quant_config.tile_size**2
- )
- if output_size_per_partition % num_tiles_per_perm != 0:
- raise ValueError(
- "Each permutation group must reside on the same gpu"
- )
- # Quantized 4Bit weights packed into Int32.
- qweight = PackedAphroditeParameter(
- data=torch.empty(
- input_size_per_partition // self.quant_config.tile_size,
- output_size_per_partition
- * self.quant_config.tile_size
- // self.quant_config.pack_factor,
- device="cuda",
- dtype=torch.int32,
- ),
- input_dim=0,
- output_dim=1,
- packed_dim=1,
- packed_factor=self.quant_config.pack_factor,
- marlin_tile_size=self.quant_config.tile_size,
- weight_loader=weight_loader,
- )
- # Determine if channelwise or not
- input_groups = (
- 1
- if self.quant_config.group_size == -1
- else input_size_per_partition // self.quant_config.group_size
- )
- weight_scale_args = {
- "data": torch.empty(
- input_groups,
- output_size_per_partition,
- device="cuda",
- dtype=params_dtype,
- ),
- "weight_loader": weight_loader,
- }
- if input_groups == 1:
- scales = ChannelQuantScaleParameter(
- output_dim=1, **weight_scale_args
- )
- else:
- scales = GroupQuantScaleParameter(
- output_dim=1, input_dim=0, **weight_scale_args
- )
- # Allocate workspace (Used for internal locking mechanism)
- max_workspace_size = (
- output_size_per_partition // self.quant_config.min_n_threads
- ) * self.quant_config.max_parallel
- workspace = BaseAphroditeParameter(
- data=torch.zeros(
- max_workspace_size, device="cuda", dtype=torch.int
- ),
- weight_loader=weight_loader,
- )
- layer.register_parameter("B", qweight)
- layer.register_parameter("s", scales)
- layer.register_parameter("workspace", workspace)
- def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
- # required by torch.compile
- layer.B = Parameter(layer.B.data, requires_grad=False)
- layer.s = Parameter(layer.s.data, requires_grad=False)
- layer.workspace = Parameter(layer.workspace.data, requires_grad=False)
- def apply(
- self,
- layer: torch.nn.Module,
- x: torch.Tensor,
- bias: Optional[torch.Tensor] = None,
- ) -> torch.Tensor:
- qweight = layer.B
- scales = layer.s
- workspace = layer.workspace
- x_2d = x.view(-1, x.shape[-1])
- size_m = x_2d.shape[0]
- size_k = x_2d.shape[1]
- size_n = scales.shape[1]
- output_2d = ops.marlin_gemm(
- x_2d, qweight, scales, workspace, size_m, size_n, size_k
- )
- output = output_2d.view(x.shape[:-1] + (output_2d.shape[1],))
- if bias is not None:
- output.add_(bias) # In-place add
- return output
|