123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- import torch
- from aphrodite.common.utils import print_warning_once
- from aphrodite.quantization.base_config import (QuantizationConfig,
- QuantizeMethodBase)
- class BaseKVCacheMethod(QuantizeMethodBase):
- """
- Quant method that adds `_k_scale` and `_v_scale` attributes to the
- Attention layer to support loading those scaling factors from checkpoints.
- The k/v_scale will be used to:
- - quantize k/v_cache entries before saving them to the cache
- - dequantize k/v_cache entries before fetching them from the cache
- :param quant_config: the appropriate QuantizationConfig
- """
- def __init__(self, quant_config: QuantizationConfig):
- self.quant_config = quant_config
- def create_weights(self, layer: torch.nn.Module):
- """
- Create "weight" (aka k_scale and v_scale) for an attention layer.
- """
- # Initialize the KV cache scales to -1.0, which is an invalid value.
- # If the k/v_scale appears in the checkpoint, it will be
- # overwritten when loading weights.
- layer.k_scale = torch.nn.Parameter(torch.tensor(-1.0),
- requires_grad=False)
- layer.v_scale = torch.nn.Parameter(torch.tensor(-1.0),
- requires_grad=False)
- def apply(self, layer: torch.nn.Module) -> torch.Tensor:
- raise RuntimeError(
- f"{self.__class__.__name__}.apply should not be called.")
- def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
- # If the kv-cache dtype is auto, we enforce the k/v_scale to be 1.0
- # regardless whether the kv-scale is available in the checkpoint.
- if layer.kv_cache_dtype != "auto":
- if layer.k_scale > 0.0 and layer.v_scale > 0.0:
- # We prefer to use separate k_scale and v_scale if present
- k_scale = layer.k_scale.to("cpu").tolist()
- v_scale = layer.v_scale.to("cpu").tolist()
- elif layer.k_scale < 0.0 and layer.v_scale < 0.0:
- # If no scales were loaded (both scales are invalid negative
- # values), use the default value of 1.0
- k_scale = 1.0
- v_scale = 1.0
- else:
- # If we find a single kv_scale in the checkpoint, we remap
- # kv_scale to k_scale during weight loading, and duplicate
- # k_scale to v_scale here
- assert layer.k_scale > 0.0
- scale_to_duplicate = max(layer.k_scale, layer.v_scale)
- k_scale = scale_to_duplicate.to("cpu").tolist()
- v_scale = scale_to_duplicate.to("cpu").tolist()
- if not isinstance(k_scale, float) or not isinstance(
- v_scale, float):
- raise ValueError("Only support per-tensor scaling factor "
- "for fp8 KV cache")
- # These are used in the final Attention.forward()
- layer._k_scale = k_scale
- layer._v_scale = v_scale
- if (layer._k_scale == 1.0 and layer._v_scale == 1.0
- and "e5m2" not in layer.kv_cache_dtype):
- print_warning_once(
- "Using KV cache scaling factor 1.0 for fp8_e4m3. This "
- "may cause accuracy issues. Please make sure k/v_scale "
- "scaling factors are available in the fp8 checkpoint.")
- del layer.k_scale
- del layer.v_scale
|