123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243 |
- import enum
- from enum import Enum
- from fractions import Fraction
- from typing import Any, Dict, List, Optional
- import torch
- from torch.nn.parameter import Parameter
- from aphrodite import _custom_ops as ops
- from aphrodite.modeling.layers.linear import LinearBase, LinearMethodBase
- from aphrodite.modeling.layers.vocab_parallel_embedding import ParallelLMHead
- from aphrodite.modeling.parameter import (ChannelQuantScaleParameter,
- GroupQuantScaleParameter,
- PackedAphroditeParameter,
- PackedColumnParameter,
- RowAphroditeParameter)
- from aphrodite.quantization.base_config import QuantizationConfig
- class GPTQConfig(QuantizationConfig):
- """Config class for GPTQ.
- Reference: https://arxiv.org/abs/2210.17323
- """
- def __init__(
- self,
- weight_bits: int,
- group_size: int,
- desc_act: bool,
- lm_head_quantized: bool,
- ) -> None:
- self.weight_bits = weight_bits
- self.group_size = group_size
- self.desc_act = desc_act
- self.lm_head_quantized = lm_head_quantized
- self.pack_factor = Fraction(32, self.weight_bits)
- if self.weight_bits not in [2, 3, 4, 8]:
- raise ValueError(
- "Currently, only 2/3/4/8-bit weight quantization is "
- f"supported for GPTQ, but got {self.weight_bits} bits.")
- def __repr__(self) -> str:
- return (f"GPTQConfig(weight_bits={self.weight_bits}, "
- f"group_size={self.group_size}, "
- f"desc_act={self.desc_act}),"
- f"lm_head_quantized={self.lm_head_quantized}")
- @classmethod
- def get_name(cls) -> str:
- return "gptq"
- @classmethod
- def get_supported_act_dtypes(cls) -> List[torch.dtype]:
- return [torch.half]
- @classmethod
- # Need to figure it out
- def get_min_capability(cls) -> int:
- return 60
- @classmethod
- def get_config_filenames(cls) -> List[str]:
- return ["quantize_config.json"]
- @classmethod
- def from_config(cls, config: Dict[str, Any]) -> "GPTQConfig":
- weight_bits = cls.get_from_keys(config, ["bits"])
- group_size = cls.get_from_keys(config, ["group_size"])
- desc_act = cls.get_from_keys(config, ["desc_act"])
- lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"],
- default=False)
- return cls(weight_bits, group_size, desc_act, lm_head_quantized)
- def get_quant_method(self, layer: torch.nn.Module,
- prefix: str) -> Optional["GPTQLinearMethod"]:
- if (isinstance(layer, LinearBase) or
- (isinstance(layer, ParallelLMHead) and self.lm_head_quantized)):
- return GPTQLinearMethod(self)
- return None
- def get_scaled_act_names(self) -> List[str]:
- return []
- class ExllamaState(Enum):
- UNUSED = enum.auto()
- UNINITIALIZED = enum.auto()
- READY = enum.auto()
- class GPTQLinearMethod(LinearMethodBase):
- """Linear method for GPTQ.
- Args:
- quant_config: The GPTQ quantization config.
- """
- def __init__(self, quant_config: GPTQConfig):
- self.quant_config = quant_config
- def create_weights(
- self,
- layer: torch.nn.Module,
- input_size_per_partition: int,
- output_partition_sizes: List[int],
- input_size: int,
- output_size: int,
- params_dtype: torch.dtype,
- **extra_weight_attrs,
- ):
- del output_size # Unused.
- weight_loader = extra_weight_attrs.get("weight_loader")
- if input_size_per_partition % self.quant_config.group_size != 0:
- raise ValueError(
- "The input size is not aligned with the quantized "
- "weight shape. This can be caused by too large "
- "tensor parallel size.")
- output_size_per_partition = sum(output_partition_sizes)
- if (output_size_per_partition % self.quant_config.pack_factor.numerator
- != 0):
- raise ValueError(
- "The output size is not aligned with the quantized "
- "weight shape. This can be caused by too large "
- "tensor parallel size.")
- if self.quant_config.group_size != -1:
- group_size = self.quant_config.group_size
- else:
- group_size = input_size
- exllama_state = ExllamaState.UNINITIALIZED
- scale_and_zero_size = input_size // group_size
- scale_and_zero_input_dim = None
- if (input_size != input_size_per_partition
- and self.quant_config.group_size != -1):
- # For act-order models, we cannot use Exllama for row parallel layer
- if self.quant_config.desc_act:
- exllama_state = ExllamaState.UNUSED
- else:
- # we need to partition qzeros and scales for exllama kernel
- scale_and_zero_size = input_size_per_partition // group_size
- scale_and_zero_input_dim = 0
- qweight = PackedAphroditeParameter(
- data=torch.empty(
- input_size_per_partition // self.quant_config.pack_factor,
- output_size_per_partition,
- dtype=torch.int32,
- ),
- input_dim=0,
- output_dim=1,
- packed_dim=0,
- packed_factor=self.quant_config.pack_factor,
- weight_loader=weight_loader)
- g_idx = RowAphroditeParameter(data=torch.tensor(
- [
- i // self.quant_config.group_size
- for i in range(input_size_per_partition)
- ],
- dtype=torch.int32,
- ),
- input_dim=0,
- weight_loader=weight_loader)
- qzeros_args = {
- "data":
- torch.empty(
- scale_and_zero_size,
- output_size_per_partition // self.quant_config.pack_factor,
- dtype=torch.int32,
- ),
- "weight_loader":
- weight_loader
- }
- weight_scale_args = {
- "data":
- torch.empty(
- scale_and_zero_size,
- output_size_per_partition,
- dtype=params_dtype,
- ),
- "weight_loader":
- weight_loader
- }
- if scale_and_zero_input_dim is None:
- scales = ChannelQuantScaleParameter(output_dim=1,
- **weight_scale_args)
- qzeros = PackedColumnParameter(
- output_dim=1,
- packed_dim=1,
- packed_factor=self.quant_config.pack_factor,
- **qzeros_args)
- else:
- scales = GroupQuantScaleParameter(output_dim=1,
- input_dim=0,
- **weight_scale_args)
- qzeros = PackedColumnParameter(
- input_dim=0,
- output_dim=1,
- packed_dim=1,
- packed_factor=self.quant_config.pack_factor,
- **qzeros_args)
- layer.register_parameter("qweight", qweight)
- layer.register_parameter("g_idx", g_idx)
- layer.register_parameter("qzeros", qzeros)
- layer.register_parameter("scales", scales)
- layer.exllama_state = exllama_state
- def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
- # for torch.compile
- layer.qweight = Parameter(layer.qweight.data, requires_grad=False)
- layer.qzeros = Parameter(layer.qzeros.data, requires_grad=False)
- layer.qweight = Parameter(layer.qweight.data, requires_grad=False)
- layer.g_idx = Parameter(layer.g_idx.data, requires_grad=False)
- # exllama needs to shuffle the weight after the weight is loaded
- # here we do the shuffle on first forward pass
- if layer.exllama_state == ExllamaState.UNINITIALIZED:
- if self.quant_config.desc_act:
- layer.g_idx.data = torch.argsort(layer.g_idx).to(torch.int)
- else:
- layer.g_idx.data = torch.empty((0, ),
- dtype=torch.int,
- device=layer.g_idx.device)
- layer.exllama_state = ExllamaState.READY
- ops.gptq_shuffle(layer.qweight, layer.g_idx,
- self.quant_config.weight_bits)
- def apply(self,
- layer: torch.nn.Module,
- x: torch.Tensor,
- bias: Optional[torch.Tensor] = None) -> torch.Tensor:
- out_shape = x.shape[:-1] + (layer.qweight.shape[-1], )
- reshaped_x = x.reshape(-1, x.shape[-1])
- output = ops.gptq_gemm(reshaped_x, layer.qweight, layer.qzeros,
- layer.scales, layer.g_idx,
- layer.exllama_state == ExllamaState.READY,
- self.quant_config.weight_bits)
- if bias is not None:
- output.add_(bias)
- return output.reshape(out_shape)
|