123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- from contextlib import suppress
- from typing import Any, Dict, List, Optional
- import torch
- from torch.nn.parameter import Parameter
- from aphrodite.modeling.layers.linear import LinearBase, LinearMethodBase
- from aphrodite.modeling.utils import set_weight_attrs
- from aphrodite.quantization.base_config import QuantizationConfig
- HAS_EETQ = False
- with suppress(ImportError):
- from eetq import w8_a16_gemm
- HAS_EETQ = True
- class EETQConfig(QuantizationConfig):
- """Config class for eetq.
- https://github.com/NetEase-FuXi/EETQ/tree/main
- """
- def __init__(
- self,
- weight_bits: int,
- zero_point: bool,
- ) -> None:
- self.weight_bits = weight_bits
- self.zero_point = zero_point
- if self.weight_bits != 8:
- raise ValueError(
- "Currently, only 8-bit weight quantization is supported for "
- f"EETQ, but got {self.weight_bits} bits.")
- def __repr__(self) -> str:
- return (f"EETQConfig(weight_bits={self.weight_bits}, "
- f"zero_point={self.zero_point})")
- def get_name(self) -> str:
- return "eetq"
- def get_supported_act_dtypes(self) -> List[torch.dtype]:
- return [torch.half]
- @classmethod
- def get_min_capability(cls) -> int:
- # The EETQ kernel only supports Turing or newer GPUs.
- return 70
- @staticmethod
- def get_config_filenames() -> List[str]:
- return [
- "quant_config.json",
- "quantize_config.json",
- ]
- @classmethod
- def from_config(cls, config: Dict[str, Any]) -> "EETQConfig":
- weight_bits = cls.get_from_keys(config, ["bits"])
- zero_point = cls.get_from_keys(config, ["zero_point"])
- return cls(weight_bits, zero_point)
- def get_quant_method(self, layer: torch.nn.Module,
- prefix: str) -> Optional["EETQLinearMethod"]:
- if isinstance(layer, LinearBase):
- return EETQLinearMethod(self)
- return None
- def get_scaled_act_names(self) -> List[str]:
- return []
- class EETQLinearMethod(LinearMethodBase):
- """Linear method for EETQ.
- Args:
- quant_config: The EETQ quantization config.
- """
- def __init__(self, quant_config: EETQConfig):
- self.quant_config = quant_config
- def create_weights(self, layer: torch.nn.Module,
- input_size_per_partition: int,
- output_partition_sizes: List[int], input_size: int,
- output_size: int, params_dtype: torch.dtype,
- **extra_weight_attrs):
- output_size_per_partition = sum(output_partition_sizes)
- qweight = Parameter(torch.empty(input_size_per_partition,
- output_size_per_partition,
- dtype=torch.int8),
- requires_grad=False)
- weight_scales = Parameter(torch.empty(output_size_per_partition,
- dtype=torch.float16),
- requires_grad=False)
- set_weight_attrs(qweight, {
- "input_dim": 0,
- "output_dim": 1,
- })
- set_weight_attrs(weight_scales, {"input_dim": 0, "output_dim": 0})
- layer.register_parameter("qweight", qweight)
- set_weight_attrs(qweight, extra_weight_attrs)
- layer.register_parameter("weight_scales", weight_scales)
- set_weight_attrs(weight_scales, extra_weight_attrs)
- def apply(self,
- layer: torch.nn.Module,
- x: torch.Tensor,
- bias: Optional[torch.Tensor] = None) -> torch.Tensor:
- qweight = layer.qweight.data
- weight_scales = layer.weight_scales.data
- if HAS_EETQ:
- output = w8_a16_gemm(x, qweight, weight_scales)
- else:
- raise ImportError("You have not installed EETQ. Please refer to "
- "https://github.com/NetEase-FuXi/EETQ")
- return output
- def apply_moe_weights(self, w1: Dict[str,
- torch.Tensor], w2: Dict[str,
- torch.Tensor],
- x: torch.Tensor, gating_output: torch.Tensor,
- topk: int, renormalize: bool) -> torch.Tensor:
- raise NotImplementedError
|