123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316 |
- import torch
- import triton
- import triton.language as tl
- AWQ_TRITON_SUPPORTED_GROUP_SIZES = [-1, 32, 64, 128]
- @triton.jit
- def awq_dequantize_kernel(
- qweight_ptr, # quantized matrix
- scales_ptr, # scales, per group
- zeros_ptr, # zeros, per group
- group_size, # Should always be one of the supported group sizes
- result_ptr, # Output matrix
- num_cols, # input num cols in qweight
- num_rows, # input num rows in qweight
- BLOCK_SIZE_X: tl.constexpr,
- BLOCK_SIZE_Y: tl.constexpr):
- # Setup the pids.
- pid_x = tl.program_id(axis=0)
- pid_y = tl.program_id(axis=1)
- # Compute offsets and masks for qweight_ptr.
- offsets_y = pid_y * BLOCK_SIZE_Y + tl.arange(0, BLOCK_SIZE_Y)
- offsets_x = pid_x * BLOCK_SIZE_X + tl.arange(0, BLOCK_SIZE_X)
- offsets = num_cols * offsets_y[:, None] + offsets_x[None, :]
- masks_y = offsets_y < num_rows
- masks_x = offsets_x < num_cols
- masks = masks_y[:, None] & masks_x[None, :]
- # Compute offsets and masks for result output ptr.
- result_offsets_y = pid_y * BLOCK_SIZE_Y + tl.arange(0, BLOCK_SIZE_Y)
- result_offsets_x = pid_x * BLOCK_SIZE_X * 8 + tl.arange(
- 0, BLOCK_SIZE_X * 8)
- result_offsets = (8 * num_cols * result_offsets_y[:, None] +
- result_offsets_x[None, :])
- result_masks_y = result_offsets_y < num_rows
- result_masks_x = result_offsets_x < num_cols * 8
- result_masks = result_masks_y[:, None] & result_masks_x[None, :]
- # Load the weights.
- iweights = tl.load(qweight_ptr + offsets, masks)
- iweights = tl.interleave(iweights, iweights)
- iweights = tl.interleave(iweights, iweights)
- iweights = tl.interleave(iweights, iweights)
- # Create reverse AWQ order as tensor: [0, 4, 1, 5, 2, 6, 3, 7]
- # that will map given indices to the correct order.
- reverse_awq_order_tensor = ((tl.arange(0, 2) * 4)[None, :] +
- tl.arange(0, 4)[:, None]).reshape(8)
- # Use this to compute a set of shifts that can be used to unpack and
- # reorder the values in iweights and zeros.
- shifts = reverse_awq_order_tensor * 4
- shifts = tl.broadcast_to(shifts[None, :], (BLOCK_SIZE_Y * BLOCK_SIZE_X, 8))
- shifts = tl.reshape(shifts, (BLOCK_SIZE_Y, BLOCK_SIZE_X * 8))
- # Unpack and reorder: shift out the correct 4-bit value and mask.
- iweights = (iweights >> shifts) & 0xF
- # Compute zero offsets and masks.
- zero_offsets_y = pid_y * BLOCK_SIZE_Y // group_size + tl.arange(0, 1)
- zero_offsets_x = pid_x * BLOCK_SIZE_X + tl.arange(0, BLOCK_SIZE_X)
- zero_offsets = num_cols * zero_offsets_y[:, None] + zero_offsets_x[None, :]
- zero_masks_y = zero_offsets_y < num_rows // group_size
- zero_masks_x = zero_offsets_x < num_cols
- zero_masks = zero_masks_y[:, None] & zero_masks_x[None, :]
- # Load the zeros.
- zeros = tl.load(zeros_ptr + zero_offsets, zero_masks)
- zeros = tl.interleave(zeros, zeros)
- zeros = tl.interleave(zeros, zeros)
- zeros = tl.interleave(zeros, zeros)
- zeros = tl.broadcast_to(zeros, (BLOCK_SIZE_Y, BLOCK_SIZE_X * 8))
- # Unpack and reorder: shift out the correct 4-bit value and mask.
- zeros = (zeros >> shifts) & 0xF
- # Compute scale offsets and masks.
- scale_offsets_y = pid_y * BLOCK_SIZE_Y // group_size + tl.arange(0, 1)
- scale_offsets_x = (pid_x * BLOCK_SIZE_X * 8 +
- tl.arange(0, BLOCK_SIZE_X * 8))
- scale_offsets = (num_cols * 8 * scale_offsets_y[:, None] +
- scale_offsets_x[None, :])
- scale_masks_y = scale_offsets_y < num_rows // group_size
- scale_masks_x = scale_offsets_x < num_cols * 8
- scale_masks = scale_masks_y[:, None] & scale_masks_x[None, :]
- # Load the scales.
- scales = tl.load(scales_ptr + scale_offsets, scale_masks)
- scales = tl.broadcast_to(scales, (BLOCK_SIZE_Y, BLOCK_SIZE_X * 8))
- # Dequantize.
- iweights = (iweights - zeros) * scales
- iweights = iweights.to(result_ptr.type.element_ty)
- # Finally, store.
- tl.store(result_ptr + result_offsets, iweights, result_masks)
- @triton.jit
- def awq_gemm_kernel(a_ptr, b_ptr, c_ptr, zeros_ptr, scales_ptr, M, N, K,
- group_size, BLOCK_SIZE_M: tl.constexpr,
- BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
- SPLIT_K: tl.constexpr):
- pid = tl.program_id(axis=0)
- pid_z = tl.program_id(1)
- # NOTE: This doesn't work in TRITON_INTERPRET=1 mode. Use below instead.
- # num_pid_n = (N + BLOCK_SIZE_N - 1) // BLOCK_SIZE_N
- num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
- pid_m = pid // num_pid_n
- pid_n = pid % num_pid_n
- accumulator_dtype = c_ptr.type.element_ty
- # NOTE: This doesn't work in TRITON_INTERPRET=1 mode. Use below instead.
- # accumulator = tl.arange(0, BLOCK_SIZE_N)
- # accumulator = tl.broadcast_to(accumulator[None, :],
- # (BLOCK_SIZE_M, BLOCK_SIZE_N))
- # accumulator = accumulator & 0x0
- # accumulator = accumulator.to(accumulator_dtype)
- accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N),
- dtype=accumulator_dtype)
- # Create reverse AWQ order as tensor: [0, 4, 1, 5, 2, 6, 3, 7]
- # that will map given indices to the correct order.
- reverse_awq_order_tensor = ((tl.arange(0, 2) * 4)[None, :] +
- tl.arange(0, 4)[:, None]).reshape(8)
- # Create the necessary shifts to use to unpack.
- shifts = reverse_awq_order_tensor * 4
- shifts = tl.broadcast_to(shifts[None, :],
- (BLOCK_SIZE_K * (BLOCK_SIZE_N // 8), 8))
- shifts = tl.reshape(shifts, (BLOCK_SIZE_K, BLOCK_SIZE_N))
- # Offsets and masks.
- offsets_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
- masks_am = offsets_am < M
- offsets_bn = pid_n * (BLOCK_SIZE_N // 8) + tl.arange(0, BLOCK_SIZE_N // 8)
- masks_bn = offsets_bn < N // 8
- offsets_zn = pid_n * (BLOCK_SIZE_N // 8) + tl.arange(0, BLOCK_SIZE_N // 8)
- masks_zn = offsets_zn < N // 8
- offsets_sn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
- masks_sn = offsets_sn < N
- offsets_k = pid_z * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
- offsets_a = K * offsets_am[:, None] + offsets_k[None, :]
- offsets_b = (N // 8) * offsets_k[:, None] + offsets_bn[None, :]
- a_ptrs = a_ptr + offsets_a
- b_ptrs = b_ptr + offsets_b
- # NOTE: Use this in TRITON_INTERPRET=1 mode instead of tl.cdiv
- # block_offset = BLOCK_SIZE_K * SPLIT_K
- # for k in range(0, (K + block_offset - 1) // (block_offset)):
- for k in range(0, tl.cdiv(K, BLOCK_SIZE_K * SPLIT_K)):
- masks_k = offsets_k < K
- masks_a = masks_am[:, None] & masks_k[None, :]
- a = tl.load(a_ptrs, mask=masks_a)
- masks_b = masks_k[:, None] & masks_bn[None, :]
- b = tl.load(b_ptrs, mask=masks_b)
- b = tl.interleave(b, b)
- b = tl.interleave(b, b)
- b = tl.interleave(b, b)
- # Dequantize b.
- offsets_szk = (
- (BLOCK_SIZE_K * SPLIT_K * k + pid_z * BLOCK_SIZE_K) // group_size +
- tl.arange(0, 1))
- offsets_z = (N // 8) * offsets_szk[:, None] + offsets_zn[None, :]
- masks_zk = offsets_szk < K // group_size
- masks_z = masks_zk[:, None] & masks_zn[None, :]
- zeros_ptrs = zeros_ptr + offsets_z
- zeros = tl.load(zeros_ptrs, mask=masks_z)
- zeros = tl.interleave(zeros, zeros)
- zeros = tl.interleave(zeros, zeros)
- zeros = tl.interleave(zeros, zeros)
- zeros = tl.broadcast_to(zeros, (BLOCK_SIZE_K, BLOCK_SIZE_N))
- offsets_s = N * offsets_szk[:, None] + offsets_sn[None, :]
- masks_sk = offsets_szk < K // group_size
- masks_s = masks_sk[:, None] & masks_sn[None, :]
- scales_ptrs = scales_ptr + offsets_s
- scales = tl.load(scales_ptrs, mask=masks_s)
- scales = tl.broadcast_to(scales, (BLOCK_SIZE_K, BLOCK_SIZE_N))
- b = (b >> shifts) & 0xF
- zeros = (zeros >> shifts) & 0xF
- b = (b - zeros) * scales
- b = b.to(c_ptr.type.element_ty)
- # Accumulate results.
- accumulator = tl.dot(a, b, accumulator, out_dtype=accumulator_dtype)
- offsets_k += BLOCK_SIZE_K * SPLIT_K
- a_ptrs += BLOCK_SIZE_K * SPLIT_K
- b_ptrs += BLOCK_SIZE_K * SPLIT_K * (N // 8)
- c = accumulator.to(c_ptr.type.element_ty)
- offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
- offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
- c_ptrs = c_ptr + N * offs_cm[:, None] + offs_cn[None, :]
- c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
- if SPLIT_K == 1:
- tl.store(c_ptrs, c, mask=c_mask)
- else:
- tl.atomic_add(c_ptrs, c, mask=c_mask)
- # qweights - [K , M // 8], int32
- # scales - [K // G, M ], float16
- # zeros - [K // G, M // 8], int32
- def awq_dequantize_triton(qweight: torch.Tensor,
- scales: torch.Tensor,
- zeros: torch.Tensor,
- block_size_x: int = 32,
- block_size_y: int = 32) -> torch.Tensor:
- K = qweight.shape[0]
- M = scales.shape[1]
- group_size = qweight.shape[0] // scales.shape[0]
- assert K > 0 and M > 0
- assert scales.shape[0] == K // group_size and scales.shape[1] == M
- assert zeros.shape[0] == K // group_size and zeros.shape[1] == M // 8
- assert group_size <= K
- assert group_size in AWQ_TRITON_SUPPORTED_GROUP_SIZES or group_size == K
- # Result tensor:
- # number of rows = same as input tensor
- # number of cols = 8 x input tensor num cols
- result = torch.empty(qweight.shape[0],
- qweight.shape[1] * 8,
- device=qweight.device,
- dtype=scales.dtype)
- Y = qweight.shape[0] # num rows
- X = qweight.shape[1] # num cols
- grid = lambda META: (
- triton.cdiv(X, META['BLOCK_SIZE_X']),
- triton.cdiv(Y, META['BLOCK_SIZE_Y']),
- )
- awq_dequantize_kernel[grid](qweight,
- scales,
- zeros,
- group_size,
- result,
- X,
- Y,
- BLOCK_SIZE_X=block_size_x,
- BLOCK_SIZE_Y=block_size_y)
- return result
- # input - [M, K]
- # qweight - [K, N // 8]
- # qzeros - [K // G, N // 8]
- # scales - [K // G, N]
- # split_k_iters - parallelism along K-dimension, int, power of 2.
- def awq_gemm_triton(input: torch.Tensor,
- qweight: torch.Tensor,
- scales: torch.Tensor,
- qzeros: torch.Tensor,
- split_k_iters: int,
- block_size_m: int = 32,
- block_size_n: int = 32,
- block_size_k: int = 32) -> torch.Tensor:
- M, K = input.shape
- N = qweight.shape[1] * 8
- group_size = qweight.shape[0] // qzeros.shape[0]
- assert N > 0 and K > 0 and M > 0
- assert qweight.shape[0] == K and qweight.shape[1] == N // 8
- assert qzeros.shape[0] == K // group_size and qzeros.shape[1] == N // 8
- assert scales.shape[0] == K // group_size and scales.shape[1] == N
- assert split_k_iters & (split_k_iters - 1) == 0 and split_k_iters != 0
- assert split_k_iters <= 32
- assert group_size <= K
- assert group_size in AWQ_TRITON_SUPPORTED_GROUP_SIZES or group_size == K
- grid = lambda META: (
- triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(
- N, META['BLOCK_SIZE_N']),
- split_k_iters,
- )
- result = torch.zeros((M, N), dtype=scales.dtype, device=input.device)
- # A = input, B = qweight, C = result
- # A = M x K, B = K x N, C = M x N
- awq_gemm_kernel[grid](input,
- qweight,
- result,
- qzeros,
- scales,
- M,
- N,
- K,
- group_size,
- BLOCK_SIZE_M=block_size_m,
- BLOCK_SIZE_N=block_size_n,
- BLOCK_SIZE_K=block_size_k,
- SPLIT_K=split_k_iters)
- return result
|