123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270 |
- from typing import Any, Dict, List, Optional
- import torch
- from loguru import logger
- from aphrodite import _custom_ops as ops
- from aphrodite.modeling.layers.linear import LinearBase, LinearMethodBase
- from aphrodite.modeling.layers.vocab_parallel_embedding import ParallelLMHead
- from aphrodite.modeling.parameter import (GroupQuantScaleParameter,
- PackedAphroditeParameter)
- from aphrodite.quantization.base_config import QuantizationConfig
- from aphrodite.quantization.utils import replace_parameter
- from aphrodite.quantization.utils.marlin_utils import (
- apply_awq_marlin_linear, awq_to_marlin_zero_points, check_marlin_supported,
- marlin_make_empty_g_idx, marlin_make_workspace, marlin_permute_scales,
- verify_marlin_supported, verify_marlin_supports_shape)
- from aphrodite.scalar_type import scalar_types
- class AWQMarlinConfig(QuantizationConfig):
- """Config class for AWQ Marlin"""
- # num_bits -> type
- TYPE_MAP = {
- 4: scalar_types.uint4,
- 8: scalar_types.uint8,
- }
- def __init__(self, weight_bits: int, group_size: int, has_zp: bool,
- lm_head_quantized: bool) -> None:
- self.pack_factor = 32 // weight_bits # packed into int32
- self.group_size = group_size
- self.has_zp = has_zp
- self.lm_head_quantized = lm_head_quantized
- if weight_bits not in self.TYPE_MAP:
- raise ValueError(f"Unsupported num_bits = {weight_bits}. "
- f"Supported num_bits = {self.TYPE_MAP.keys()}")
- self.quant_type = self.TYPE_MAP[weight_bits]
- verify_marlin_supported(self.quant_type,
- group_size=self.group_size,
- has_zp=self.has_zp)
- def __repr__(self) -> str:
- return (f"AWQMarlinConfig(quant_type={self.quant_type}, "
- f"group_size={self.group_size}, "
- f"has_zp={self.has_zp}, "
- f"lm_head_quantized={self.lm_head_quantized})")
- @classmethod
- def get_name(cls) -> str:
- return "awq_marlin"
- @classmethod
- def get_supported_act_dtypes(cls) -> List[torch.dtype]:
- return [torch.half, torch.bfloat16]
- @classmethod
- def get_min_capability(cls) -> int:
- return 80
- @classmethod
- def get_config_filenames(cls) -> List[str]:
- return ["quantize_config.json"]
- @classmethod
- def from_config(cls, config: Dict[str, Any]) -> "AWQMarlinConfig":
- weight_bits = cls.get_from_keys(config, ["bits"])
- group_size = cls.get_from_keys(config, ["group_size"])
- has_zp = cls.get_from_keys(config, ["zero_point"])
- lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"],
- default=False)
- return cls(weight_bits, group_size, has_zp, lm_head_quantized)
- @classmethod
- def override_quantization_method(cls, hf_quant_cfg,
- user_quant) -> Optional[str]:
- can_convert = cls.is_awq_marlin_compatible(hf_quant_cfg)
- is_valid_user_quant = (user_quant is None or user_quant == "marlin"
- or user_quant == "awq_marlin")
- if can_convert and is_valid_user_quant:
- msg = ("The model is convertible to {} during runtime."
- " Using {} kernel.".format(cls.get_name(), cls.get_name()))
- logger.info(msg)
- return cls.get_name()
- if can_convert and user_quant == "awq":
- logger.info("Detected that the model can run with awq_marlin"
- ", however you specified quantization=awq explicitly,"
- " so forcing awq. Use quantization=awq_marlin for"
- " faster inference")
- return None
- def get_quant_method(self, layer: torch.nn.Module,
- prefix: str) -> Optional["AWQMarlinLinearMethod"]:
- if (isinstance(layer, LinearBase) or
- (isinstance(layer, ParallelLMHead) and self.lm_head_quantized)):
- return AWQMarlinLinearMethod(self)
- return None
- def get_scaled_act_names(self) -> List[str]:
- return []
- @classmethod
- def is_awq_marlin_compatible(cls, quant_config: Dict[str, Any]):
- # Extract data from quant config.
- quant_method = quant_config.get("quant_method", "").lower()
- num_bits = quant_config.get("bits", None)
- group_size = quant_config.get("group_size", None)
- has_zp = quant_config.get("zero_point", None)
- if quant_method != "awq":
- return False
- # If we cannot find the info needed in the config, cannot convert.
- if (num_bits is None or group_size is None or has_zp is None):
- return False
- if num_bits not in cls.TYPE_MAP:
- return False
- return check_marlin_supported(quant_type=cls.TYPE_MAP[num_bits],
- group_size=group_size,
- has_zp=has_zp)
- class AWQMarlinLinearMethod(LinearMethodBase):
- """Linear method for AWQ Marlin.
- Args:
- quant_config: The AWQ Marlin quantization config.
- """
- def __init__(self, quant_config: AWQMarlinConfig) -> None:
- self.quant_config = quant_config
- def create_weights(
- self,
- layer: torch.nn.Module,
- input_size_per_partition: int,
- output_partition_sizes: List[int],
- input_size: int,
- output_size: int,
- params_dtype: torch.dtype,
- **extra_weight_attrs,
- ) -> None:
- del output_size
- output_size_per_partition = sum(output_partition_sizes)
- weight_loader = extra_weight_attrs.get("weight_loader")
- # Normalize group_size
- if self.quant_config.group_size != -1:
- group_size = self.quant_config.group_size
- else:
- group_size = input_size
- verify_marlin_supports_shape(
- output_size_per_partition=output_size_per_partition,
- input_size_per_partition=input_size_per_partition,
- input_size=input_size,
- group_size=group_size)
- qweight = PackedAphroditeParameter(
- data=torch.empty(
- input_size_per_partition,
- output_size_per_partition // self.quant_config.pack_factor,
- dtype=torch.int32,
- ),
- input_dim=0,
- output_dim=1,
- packed_dim=1,
- packed_factor=self.quant_config.pack_factor,
- weight_loader=weight_loader)
- num_groups = input_size_per_partition // group_size
- qzeros = PackedAphroditeParameter(
- data=torch.empty(
- num_groups,
- output_size_per_partition // self.quant_config.pack_factor,
- dtype=torch.int32,
- ),
- input_dim=0,
- output_dim=1,
- packed_dim=1,
- packed_factor=self.quant_config.pack_factor,
- weight_loader=weight_loader)
- scales = GroupQuantScaleParameter(data=torch.empty(
- num_groups,
- output_size_per_partition,
- dtype=params_dtype,
- ),
- input_dim=0,
- output_dim=1,
- weight_loader=weight_loader)
- layer.register_parameter("qweight", qweight)
- layer.register_parameter("qzeros", qzeros)
- layer.register_parameter("scales", scales)
- layer.input_size_per_partition = input_size_per_partition
- layer.output_size_per_partition = output_size_per_partition
- layer.num_groups = num_groups
- # TODO: Update this docs
- # Checkpoints are serialized in AutoAWQ format, which is different from the
- # marlin format. This function is called after the weights are loaded.
- # Here, we handle the repacking
- def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
- device = layer.qweight.device
- layer.qweight = torch.nn.Parameter(layer.qweight.data,
- requires_grad=False)
- layer.qzeros = torch.nn.Parameter(layer.qzeros.data,
- requires_grad=False)
- layer.scales = torch.nn.Parameter(layer.scales.data,
- requires_grad=False)
- # Allocate marlin workspace
- layer.workspace = marlin_make_workspace(
- layer.output_size_per_partition, device)
- # Repack weights from AWQ format to marlin format.
- marlin_qweight = ops.awq_marlin_repack(
- layer.qweight,
- size_k=layer.input_size_per_partition,
- size_n=layer.output_size_per_partition,
- num_bits=self.quant_config.quant_type.size_bits)
- replace_parameter(layer, "qweight", marlin_qweight)
- # Permute scales from AWQ format to marlin format.
- marlin_scales = marlin_permute_scales(
- layer.scales,
- size_k=layer.input_size_per_partition,
- size_n=layer.output_size_per_partition,
- group_size=self.quant_config.group_size)
- replace_parameter(layer, "scales", marlin_scales)
- # Permute zero-points from AWQ format to marlin format.
- marlin_zp = awq_to_marlin_zero_points(
- layer.qzeros,
- size_k=layer.num_groups,
- size_n=layer.output_size_per_partition,
- num_bits=self.quant_config.quant_type.size_bits)
- replace_parameter(layer, "qzeros", marlin_zp)
- # Not-used
- layer.g_idx = marlin_make_empty_g_idx(device)
- layer.g_idx_sort_indices = marlin_make_empty_g_idx(device)
- def apply(
- self,
- layer: torch.nn.Module,
- x: torch.Tensor,
- bias: Optional[torch.Tensor] = None,
- ) -> torch.Tensor:
- return apply_awq_marlin_linear(
- input=x,
- weight=layer.qweight,
- weight_scale=layer.scales,
- weight_zp=layer.qzeros,
- g_idx=layer.g_idx,
- g_idx_sort_indices=layer.g_idx_sort_indices,
- workspace=layer.workspace,
- quant_type=self.quant_config.quant_type,
- output_size_per_partition=layer.output_size_per_partition,
- input_size_per_partition=layer.input_size_per_partition,
- bias=bias)
|