123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451 |
- import math
- from typing import Iterable, List, Optional, Tuple
- import torch
- from torch import nn
- from transformers.configuration_utils import PretrainedConfig
- from aphrodite.attention import Attention, AttentionMetadata
- from aphrodite.common.config import CacheConfig, LoRAConfig
- from aphrodite.common.sequence import IntermediateTensors
- from aphrodite.distributed import (get_tensor_model_parallel_rank,
- get_tensor_model_parallel_world_size)
- from aphrodite.modeling.layers.linear import (MergedColumnParallelLinear,
- QKVParallelLinear,
- RowParallelLinear)
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.rotary_embedding import get_rope
- from aphrodite.modeling.layers.sampler import Sampler, SamplerOutput
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
- from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.quantization.base_config import QuantizationConfig
- def load_column_parallel_weight(param: torch.nn.Parameter,
- loaded_weight: torch.Tensor):
- tp = get_tensor_model_parallel_world_size()
- rk = get_tensor_model_parallel_rank()
- assert param.size(0) * tp == loaded_weight.size(0)
- s = rk * param.size(0)
- e = (rk + 1) * param.size(0)
- loaded_weight = loaded_weight[s:e]
- assert param.shape == loaded_weight.shape
- param.data.copy_(loaded_weight)
- class HeadMajorQKVParallelLinear(QKVParallelLinear):
- def weight_loader(self, param: torch.nn.Parameter,
- loaded_weight: torch.Tensor):
- return load_column_parallel_weight(param, loaded_weight)
- class HeadMajorColumnParallelLinear(MergedColumnParallelLinear):
- def weight_loader(self, param: torch.nn.Parameter,
- loaded_weight: torch.Tensor):
- return load_column_parallel_weight(param, loaded_weight)
- @torch.jit.script
- def quick_gelu(x):
- return x * torch.sigmoid(1.702 * x)
- @torch.jit.script
- def gegelu(input, limit: Optional[float] = None):
- a_gelu, a_linear = input[..., ::2], input[..., 1::2]
- if limit is not None:
- a_gelu = torch.where(torch.isinf(a_gelu), a_gelu,
- a_gelu.clamp(min=None, max=limit))
- a_linear = torch.where(
- torch.isinf(a_linear),
- a_linear,
- a_linear.clamp(min=-limit, max=limit),
- )
- out_gelu = quick_gelu(a_gelu)
- return out_gelu * (a_linear + 1)
- class Phi3SmallMLP(nn.Module):
- def __init__(
- self,
- config: PretrainedConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ) -> None:
- super().__init__()
- self.config = config
- assert (self.config.hidden_act == "gegelu"
- ), "Only `gegelu` is supported for the 4.7 series of models .."
- self.hidden_size = config.hidden_size
- self.gegelu_limit = config.gegelu_limit
- self.intermediate_size = config.intermediate_size
- self.up_proj = HeadMajorColumnParallelLinear(
- self.hidden_size,
- 2 * [self.intermediate_size],
- bias=True,
- quant_config=quant_config,
- )
- self.down_proj = RowParallelLinear(
- self.intermediate_size,
- self.hidden_size,
- bias=True,
- quant_config=quant_config,
- )
- def forward(self, x):
- gate_up, _ = self.up_proj(x)
- x = gegelu(gate_up)
- x, _ = self.down_proj(x)
- return x
- class Phi3SmallSelfAttention(nn.Module):
- def __init__(
- self,
- config: PretrainedConfig,
- layer_idx: int,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ) -> None:
- super().__init__()
- self.layer_idx = layer_idx
- self.config = config
- self.sparse_block_size = config.blocksparse_block_size
- self.homo_heads = config.blocksparse_homo_head_pattern
- self.local_blocks = config.blocksparse_num_local_blocks
- self.vert_stride = config.blocksparse_vert_stride
- assert (config.blocksparse_block_size ==
- config.blocksparse_triton_kernel_block_size)
- self.hidden_size = config.hidden_size
- # Number of Query Heads
- self.num_heads = config.num_attention_heads
- self.head_dim = self.hidden_size // self.num_heads
- self.tp_size = get_tensor_model_parallel_world_size()
- # Number of total Key Value Heads before tensor parallel
- self.num_key_value_heads = config.num_key_value_heads
- self.num_q_per_kv = self.num_heads // self.num_key_value_heads
- if self.tp_size > 1:
- assert self.num_key_value_heads % self.tp_size == 0
- self.num_kv_heads_per_partion = max(
- 1, self.num_key_value_heads // self.tp_size)
- self.num_heads_per_partition = self.num_heads // self.tp_size
- self.max_position_embeddings = config.max_position_embeddings
- self.rope_embedding_base = config.rope_embedding_base
- self.rope_position_scale = config.rope_position_scale
- self.is_causal = True
- norm_factor = None
- if config.mup_use_scaling:
- norm_factor = self.head_dim / config.mup_attn_multiplier
- else:
- norm_factor = math.sqrt(self.head_dim)
- self.scale = 1 / norm_factor
- self.query_key_value = HeadMajorQKVParallelLinear(
- self.hidden_size,
- self.head_dim,
- self.num_heads,
- self.num_key_value_heads,
- bias=True,
- quant_config=quant_config,
- )
- self.dense = RowParallelLinear(self.hidden_size,
- self.hidden_size,
- bias=True,
- quant_config=quant_config)
- if getattr(self.config, "rope_scaling", None) is not None:
- rope_scaling = self.config.rope_scaling
- for key in rope_scaling:
- if isinstance(rope_scaling[key], list):
- rope_scaling[key] = tuple(rope_scaling[key])
- if "factor" not in rope_scaling:
- rope_scaling["factor"] = self.rope_position_scale
- else:
- rope_scaling = {
- "type": "linear",
- "factor": self.rope_position_scale,
- }
- self.rotary_emb = get_rope(
- self.head_dim,
- rotary_dim=self.head_dim,
- max_position=self.max_position_embeddings,
- base=self.rope_embedding_base,
- rope_scaling=rope_scaling,
- )
- # blocksparse params
- self.blocksparse_block_size = config.blocksparse_block_size
- self.blocksparse_num_local_blocks = config.blocksparse_num_local_blocks
- self.blocksparse_vert_stride = config.blocksparse_vert_stride
- use_dense_attn = (getattr(self.config,
- "dense_attention_every_n_layers", None)
- and (self.layer_idx + 1) %
- self.config.dense_attention_every_n_layers == 0)
- bs_params = None
- if not use_dense_attn:
- bs_params = {
- 'max_seqlen': self.max_position_embeddings,
- 'num_heads': self.num_heads_per_partition,
- "num_kv_heads": self.num_kv_heads_per_partion,
- "block_size": self.sparse_block_size,
- "local_blocks": self.local_blocks,
- "vert_stride": self.vert_stride,
- "homo_head": self.homo_heads
- }
- self.attn = Attention(
- self.num_heads_per_partition,
- self.head_dim,
- self.scale,
- num_kv_heads=self.num_kv_heads_per_partion,
- cache_config=cache_config,
- quant_config=quant_config,
- blocksparse_params=bs_params,
- )
- def forward(
- self,
- positions: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor],
- Optional[Tuple[torch.Tensor]]]:
- qkv, _ = self.query_key_value(hidden_states)
- qkv = qkv.view(qkv.shape[:-1] +
- (-1, (self.num_q_per_kv + 2), self.head_dim))
- q, k, v = qkv.split([self.num_q_per_kv, 1, 1], dim=-2)
- # NOTE: this is required by RotaryEmbed, which indeed does not have to
- # TODO: allow 3D QK for rotary forward
- q = q.reshape(-1, self.head_dim * self.num_heads_per_partition)
- k = k.reshape(-1, self.head_dim * self.num_kv_heads_per_partion)
- v = v.reshape(-1, self.head_dim * self.num_kv_heads_per_partion)
- q, k = self.rotary_emb(positions, q, k)
- attn_output = self.attn(q, k, v, kv_cache, attn_metadata=attn_metadata)
- output, _ = self.dense(attn_output)
- return output
- class Phi3SmallDecoderLayer(nn.Module):
- def __init__(
- self,
- config: PretrainedConfig,
- layer_idx: int,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.hidden_size = config.hidden_size
- self.self_attn = Phi3SmallSelfAttention(config,
- layer_idx,
- cache_config=cache_config,
- quant_config=quant_config)
- self.mlp = Phi3SmallMLP(config, quant_config)
- self.input_layernorm = nn.LayerNorm(config.hidden_size,
- eps=config.layer_norm_epsilon)
- self.post_attention_layernorm = nn.LayerNorm(
- config.hidden_size, eps=config.layer_norm_epsilon)
- def forward(
- self,
- positions: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- residual = hidden_states
- hidden_states = self.input_layernorm(hidden_states)
- hidden_states = self.self_attn(
- positions=positions,
- hidden_states=hidden_states,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata,
- )
- hidden_states = residual + hidden_states
- residual = hidden_states
- hidden_states = self.post_attention_layernorm(hidden_states)
- hidden_states = self.mlp(hidden_states)
- hidden_states = residual + hidden_states
- return hidden_states
- class Phi3SmallModel(nn.Module):
- def __init__(
- self,
- config: PretrainedConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.config = config
- self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
- config.hidden_size)
- self.mup_embedding_multiplier = config.mup_embedding_multiplier
- self.layers = nn.ModuleList([
- Phi3SmallDecoderLayer(config, layer_idx, cache_config,
- quant_config)
- for layer_idx in range(config.num_hidden_layers)
- ])
- self.final_layernorm = nn.LayerNorm(config.hidden_size,
- eps=config.layer_norm_epsilon)
- def get_input_embeddings(self):
- return self.embed_tokens
- def set_input_embeddings(self, value):
- self.embed_tokens = value
- def forward(
- self,
- input_ids: torch.LongTensor,
- positions: Optional[torch.LongTensor],
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata = None,
- ):
- hidden_states = self.embed_tokens(input_ids)
- if (self.mup_embedding_multiplier is not None
- and self.mup_embedding_multiplier > 0.0):
- hidden_states = hidden_states * self.mup_embedding_multiplier
- for i in range(len(self.layers)):
- layer = self.layers[i]
- hidden_states = layer(
- positions,
- hidden_states,
- kv_caches[i],
- attn_metadata,
- )
- hidden_states = self.final_layernorm(hidden_states)
- return hidden_states
- class Phi3SmallForCausalLM(nn.Module):
- _tied_weights_keys = ["lm_head.weight"]
- def __init__(
- self,
- config,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- lora_config: Optional[LoRAConfig] = None,
- ):
- super().__init__()
- self.config = config
- self.quant_config = quant_config
- self.model = Phi3SmallModel(config, cache_config, quant_config)
- self.vocab_size = config.vocab_size
- self.mup_width_multiplier = config.mup_width_multiplier
- self.lm_head = ParallelLMHead(
- self.vocab_size,
- config.hidden_size,
- org_num_embeddings=config.vocab_size,
- padding_size=DEFAULT_VOCAB_PADDING_SIZE,
- quant_config=quant_config,
- )
- self.logits_processor = LogitsProcessor(config.vocab_size)
- self.sampler = Sampler()
- # tokens in tiktoken but not used
- if hasattr(config, 'dummy_token_indices'):
- device = self.lm_head.weight.device
- self.register_buffer('dummy_token_indices',
- torch.LongTensor(
- config.dummy_token_indices).to(device),
- persistent=False)
- else:
- self.dummy_token_indices = None
- def get_input_embeddings(self):
- return self.model.embed_tokens
- def set_input_embeddings(self, value):
- self.model.embed_tokens = value
- def get_output_embeddings(self):
- return self.lm_head
- def set_output_embeddings(self, value):
- self.lm_head = value
- def set_decoder(self, decoder):
- self.model = decoder
- def get_decoder(self):
- return self.model
- def compute_logits(
- self,
- hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[torch.Tensor]:
- logits = self.logits_processor(self.lm_head, hidden_states,
- sampling_metadata)
- if self.dummy_token_indices is not None and logits is not None:
- logits.index_fill_(-1, self.dummy_token_indices, -torch.inf)
- return logits
- def forward(
- self,
- input_ids: torch.LongTensor,
- positions: Optional[torch.LongTensor],
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- intermediate_tensors: Optional[IntermediateTensors] = None,
- ) -> torch.Tensor:
- output_hidden_states = self.model(
- input_ids=input_ids,
- positions=positions,
- kv_caches=kv_caches,
- attn_metadata=attn_metadata,
- )
- output_hidden_states = output_hidden_states
- return output_hidden_states
- def sample(
- self,
- logits: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[SamplerOutput]:
- next_tokens = self.sampler(logits / self.mup_width_multiplier,
- sampling_metadata)
- return next_tokens
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- params_dict = dict(self.named_parameters())
- for name, loaded_weight in weights:
- if "rotary_emb.inv_freq" in name:
- continue
- if name.endswith(".bias") and name not in params_dict:
- continue
- param = params_dict[name]
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
- self.lm_head.weight.data.copy_(self.model.embed_tokens.weight.data)
|