123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307 |
- # coding=utf-8
- # Adapted from https://huggingface.co/mosaicml/mpt-7b/tree/main
- import math
- from typing import Iterable, List, Optional, Tuple
- import torch
- import torch.nn as nn
- from aphrodite.attention import Attention, AttentionMetadata
- from aphrodite.common.config import CacheConfig
- from aphrodite.common.sequence import IntermediateTensors
- from aphrodite.distributed import (get_tensor_model_parallel_rank,
- get_tensor_model_parallel_world_size)
- from aphrodite.modeling.layers.activation import get_act_fn
- from aphrodite.modeling.layers.linear import (ColumnParallelLinear,
- QKVParallelLinear,
- RowParallelLinear)
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.sampler import Sampler, SamplerOutput
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- VocabParallelEmbedding)
- from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.quantization.base_config import QuantizationConfig
- from aphrodite.transformers_utils.configs.mpt import MPTConfig
- def _get_alibi_slopes(
- total_num_heads: int,
- alibi_bias_max: int,
- ) -> torch.Tensor:
- next_power_of_2 = 2**math.ceil(math.log2(total_num_heads))
- m = torch.arange(1, next_power_of_2 + 1, dtype=torch.float32)
- m = m.mul(alibi_bias_max / next_power_of_2)
- slopes = 1.0 / torch.pow(2, m)
- if next_power_of_2 != total_num_heads:
- slopes = torch.concat([slopes[1::2], slopes[::2]])[:total_num_heads]
- return slopes
- class MPTAttention(nn.Module):
- def __init__(
- self,
- config: MPTConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.d_model = config.d_model
- self.total_num_heads = config.n_heads
- self.head_dim = self.d_model // self.total_num_heads
- self.clip_qkv = config.attn_config["clip_qkv"]
- self.qk_ln = config.attn_config["qk_ln"]
- self.alibi_bias_max = config.attn_config["alibi_bias_max"]
- if "kv_n_heads" in config.attn_config:
- self.total_num_kv_heads = config.attn_config['kv_n_heads']
- else:
- self.total_num_kv_heads = self.total_num_heads
- assert not config.attn_config["prefix_lm"]
- assert config.attn_config["alibi"]
- # pylint: disable=invalid-name
- self.Wqkv = QKVParallelLinear(
- self.d_model,
- self.d_model // self.total_num_heads,
- self.total_num_heads,
- self.total_num_kv_heads,
- bias=not config.no_bias,
- quant_config=quant_config,
- )
- if self.qk_ln:
- self.q_ln = nn.LayerNorm(self.d_model)
- self.k_ln = nn.LayerNorm(self.d_model)
- self.out_proj = RowParallelLinear(
- self.d_model,
- self.d_model,
- bias=not config.no_bias,
- quant_config=quant_config,
- )
- tp_world_size = get_tensor_model_parallel_world_size()
- assert self.total_num_heads % tp_world_size == 0
- self.num_heads = self.total_num_heads // tp_world_size
- if self.total_num_kv_heads >= tp_world_size:
- # Number of KV heads is greater than TP size, so we partition
- # the KV heads across multiple tensor parallel GPUs.
- assert self.total_num_kv_heads % tp_world_size == 0
- else:
- # Number of KV heads is less than TP size, so we replicate
- # the KV heads across multiple tensor parallel GPUs.
- assert tp_world_size % self.total_num_kv_heads == 0
- self.num_kv_heads = max(1, self.total_num_kv_heads // tp_world_size)
- self.q_size = self.num_heads * self.head_dim
- self.kv_size = self.num_kv_heads * self.head_dim
- # Create the alibi slopes and slice them.
- tp_rank = get_tensor_model_parallel_rank()
- head_start = tp_rank * self.num_heads
- head_end = (tp_rank + 1) * self.num_heads
- alibi_slopes = _get_alibi_slopes(self.total_num_heads,
- self.alibi_bias_max)
- alibi_slopes = alibi_slopes[head_start:head_end].tolist()
- self.head_dim = self.d_model // self.total_num_heads
- scaling = self.head_dim**-0.5
- self.attn = Attention(self.num_heads,
- self.head_dim,
- scaling,
- alibi_slopes=alibi_slopes,
- num_kv_heads=self.num_kv_heads,
- cache_config=cache_config,
- quant_config=quant_config)
- def forward(
- self,
- position_ids: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- del position_ids # unused.
- qkv, _ = self.Wqkv(hidden_states)
- if self.clip_qkv is not None:
- qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
- q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
- if self.qk_ln:
- q = self.q_ln(q)
- k = self.k_ln(k)
- attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
- output, _ = self.out_proj(attn_output)
- return output
- class MPTMLP(nn.Module):
- def __init__(
- self,
- config: MPTConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- hidden_size = config.d_model
- expansion_ratio = config.expansion_ratio
- intermediate_size = expansion_ratio * hidden_size
- self.up_proj = ColumnParallelLinear(
- hidden_size,
- intermediate_size,
- bias=not config.no_bias,
- quant_config=quant_config,
- )
- self.act = get_act_fn("gelu", quant_config, intermediate_size)
- self.down_proj = RowParallelLinear(
- intermediate_size,
- hidden_size,
- bias=not config.no_bias,
- quant_config=quant_config,
- )
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- x, _ = self.up_proj(x)
- x = self.act(x)
- x, _ = self.down_proj(x)
- return x
- class MPTBlock(nn.Module):
- def __init__(
- self,
- config: MPTConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- hidden_size = config.d_model
- self.norm_1 = nn.LayerNorm(hidden_size)
- self.attn = MPTAttention(config, cache_config, quant_config)
- self.norm_2 = nn.LayerNorm(hidden_size)
- self.ffn = MPTMLP(config, quant_config)
- def forward(
- self,
- position_ids: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- x = self.norm_1(hidden_states)
- x = self.attn(
- position_ids=position_ids,
- hidden_states=x,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata,
- )
- hidden_states = hidden_states + x
- x = self.norm_2(hidden_states)
- x = self.ffn(x)
- hidden_states = hidden_states + x
- return hidden_states
- class MPTModel(nn.Module):
- def __init__(
- self,
- config: MPTConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- assert config.embedding_fraction == 1.0
- assert config.norm_type == "low_precision_layernorm"
- self.wte = VocabParallelEmbedding(
- config.vocab_size,
- config.d_model,
- )
- self.blocks = nn.ModuleList([
- MPTBlock(config, cache_config, quant_config)
- for _ in range(config.n_layers)
- ])
- self.norm_f = nn.LayerNorm(config.d_model)
- if config.no_bias:
- for module in self.modules():
- if hasattr(module, "bias") and isinstance(
- module.bias, nn.Parameter):
- # Remove the bias term in Linear and LayerNorm.
- module.register_parameter("bias", None)
- def forward(
- self,
- input_ids: torch.Tensor,
- position_ids: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- hidden_states = self.wte(input_ids)
- for i in range(len(self.blocks)):
- block = self.blocks[i]
- hidden_states = block(
- position_ids,
- hidden_states,
- kv_caches[i],
- attn_metadata,
- )
- hidden_states = self.norm_f(hidden_states)
- return hidden_states
- class MPTForCausalLM(nn.Module):
- def __init__(
- self,
- config: MPTConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.config = config
- assert config.tie_word_embeddings
- self.quant_config = quant_config
- self.transformer = MPTModel(config, cache_config, quant_config)
- self.lm_head = self.transformer.wte
- self.logits_processor = LogitsProcessor(config.vocab_size)
- self.sampler = Sampler()
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- intermediate_tensors: Optional[IntermediateTensors] = None,
- ) -> torch.Tensor:
- hidden_states = self.transformer(input_ids, positions, kv_caches,
- attn_metadata)
- return hidden_states
- def compute_logits(
- self,
- hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[torch.Tensor]:
- logits = self.logits_processor(self.lm_head, hidden_states,
- sampling_metadata)
- return logits
- def sample(
- self,
- logits: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[SamplerOutput]:
- next_tokens = self.sampler(logits, sampling_metadata)
- return next_tokens
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- params_dict = dict(self.named_parameters(remove_duplicate=False))
- for name, loaded_weight in weights:
- # Skip loading extra bias for GPTQ models.
- if name.endswith(".bias") and name not in params_dict:
- continue
- param = params_dict[name]
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
|